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Preface

This book is a compilation of recitations given throughout the 2021-22 academic year at the University
of Notre Dame for the first-year PhD econometrics sequence in the Department of Economics. They
were originally composed by Alex Houtz, who was the graduate teaching assistant for Drew Creal in
Fall 2021 and Marinho Bertanha in Spring 2022. The materials within may be distributed at any
time to any audience for individual or instructional use, given proper citation to the author. These
materials may not be used for commercial purposes.

Many problems were taken or adapted from Bruce Hansen’s two econometrics books, which can
be found here. The first book is referred to as simply “Hansen” while the second book is referred to
as “Hansen II.” Other textbooks that are drawn from include Wooldridge (found here) and Hayashi
(found here). The remaining problems are either cited in-text or are taken from the homework given
in the lecture class by either Drew Creal or Marinho Bertanha.

The following list documents the chain of teaching assistants at the University of Notre Dame that
used and/or edited this book, from earliest to latest:

1. Alex Houtz (2021-2022)
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Chapter 1

Stata and Linear Algebra Review

1.1 Stata Layout

After learning Matlab last semester, Stata should be fairly intuitive. Here is Stata’s interface:

A denotes the command window - where you will input code. B is the list of variables saved in the
program. C contains the history of executed code. D outputs the results of your code.

1.2 Establishing a Working Directory

Similarly to Matlab, we need to tell Stata where to find our data. Conveniently, we use the same idea
as in Matlab (using my directory as an example):
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cd "C:\Users\alexh\OneDrive\Documents\Notre Dame\Second Year

\Metrics TA\Spring\Recitations\Recitation 1"

Note that because my directory has spaces in the name I must put quotation marks around the
directory. If there are no spaces, quotation marks are not necessary.

1.3 Constructing .log and .do Files

The .do file is a file that contains the commands you want Stata to run. By compiling a .do file, we can
(1) save the work we have done and (2) ensure that our code runs without errors. To start a .do file,
go to File→New→Do. Then copy and and paste your history into the .do file. I recommend having
coding issues sorted out up to the point saved in the file. After saving the .do file, you can then run
it in Stata by typing "do DO FILE NAME" if your saved .do file is in your directory.

Log files save the output and code you run while the log is opened. To open a log, type:

log using YOUR FILE, text replace name("RESEARCH")

where YOUR FILE is the name you want your .log file to save as and "RESEARCH" is the label you
want at the top of your .log file. Let’s look at a .do file I wrote:

Note how I establish a directory then open my .log file. The .log file associated with this code is:
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The name of the file matches the place denoted as "RESEARCH" above, while the file name in my
computer matches the place denoted as YOUR FILE above. Also note that the .log file displays the
output of the regression, whereas in the .do file, only the regress command would be shown. Remember
to always close the .log file. Otherwise, Stata will output an error. To close a .log file, type:

log close RESEARCH

1.4 Reading in Data

If your data is in a Stata .dta form already, you can type:

use FILENAME

if your file is in the same place as the directory you set. If the file is in a different place, type:

use "FILE DIRECTORY"

What happens if your data is in a spreadsheet? First, save your spreadsheet as a comma separated
file (.csv). Then type:
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insheet using FILE.csv, comma

Variables are often not labelled after reading them into Stata. It is good practice to give each
variable a short description. Let’s consider a variable "age". If age was not labelled, I would write:

label var age “age in years”

which would attach that description to the variable age. If you want a table of your variables and the
labels for each variable, type "describe".

In addition to labelling variables, sometimes we want to generate new variables. Here is a list of
examples:

The first two examples demonstrate basic mathematical transformations: squaring a variable and
logging a variable, respectively. The third example generates a dummy variable, "union", that is
equal to one (or true) when "union_status" is one. The fourth example creates a dummy vari-
able, "nonwhite", if race is either two OR three. The fifth example creates a dummy variable,
"big_northeast_city", if the region is one AND smsa is one.

1.5 Descriptive Statistics Commands

We often want to learn about our raw data before performing more sophisticated statistical tests on
the data. To generate a table that provides the mean, minimum, maximum, and standard deviation
for each variable, type "sum". If you want these statistics for only a few specific variables, type those
variables after the sum command. For example:

sum age educ

will provide a summary for only age and educ. For more information, such as the median, skew, and
kurtosis, type:
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sum, detail

We can also look at subsamples of our data. If we want to see summary statistics by race, for
example, we first type "sort race" (assuming race is a variable we have). Then type "by race: sum".
If we want to truncate our data summary to include only those that have more than 12 years of
education, type "sum if educ >= 12".

Another summary command is the "tab" command. This command produces distributions for the
data. If we want to see the distribution of race in our data, we type "tab race". We can include two
variables as well: "tab race educ, row column". The row column option will produce totals for the
rows and columns.

1.6 T-Test

If we want to compare means across groups, we can use a t-test. For example, suppose we wanted to
test if there is a difference between salaries across race. We would then type "ttest salary, by(race)".

1.7 OLS

Running regressions in Stata is much simpler than in Matlab. Suppose we wanted to run a simple
OLS regression of wages on age, education, race, region, and gender. We would then use the following
command:

reg wages age educ i.race i.region i.gender

Note that our dependent variable is listed first with the independent variables following. By placing
an i. in front of race, region, and sex, we create dummy variables for each race, region, and gender.

Recall from the first semester that sometimes we need standard errors robust to heteroskedasticity.
To change how the standard errors are calculated, type ", robust" after listing all variables.

1.8 General Advice

We all get stuck while coding. If you need help, Stata has excellent documentation. Type "help
COMMAND" to find information on how to use the code with which you are struggling. The internet
is also helpful, especially the statalist website. If all else fails, come to me or Marinho and we will do
our best to help you out.

There is a large variety of regression techniques that you can code in Stata. You will learn how
to code IV, 2SLS, GMM, Difference-in-Differences, and more throughout this class. But the primary
determinant for how well and how wide you will be able to code will be your own willingness to try
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new things and to struggle with the program. Keep at it and you’ll be able to conduct your research
with minimal technical barriers.

1.9 A Small Linear Algebra Review

1.9.1 Projection Matrix

Let X be an n × k matrix that is full rank. Then the projection matrix P is an n × n that results
from:

P = X(X′X)−1X ′

The projection matrix can be shown to have the following properties:

(i) PX = X

(ii) P = P ′

(iii) PP = P

(iv) tr(P ) = k and rank(P ) = k

We can use the projection matrix to find estimated ŷ values in our regressions.

1.9.2 Annihilator Matrix

Let X be an n × k matrix that is full rank. Then the projection matrix M is an n × n that results
from:

M = I − P

= I −X(X′X)−1X ′

The annihilator matrix can be shown to have the following properties:

(i) MX = 0

(ii) MP = 0

(iii) M = M ′

(iv) MM = M

(v) tr(M) = n− k and rank(M) = n− k

We can use the annihilator matrix to remove parts of the regression that we are not interested in
estimating. Why you would do this may not be obvious now but you will see its usefulness when you
cover the Frisch-Waugh-Lovell Theorem. We can also use the annihilator matrix to find residuals.
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1.9.3 Positive Semi-Definite Matrices

Throughout this semester, you will have to prove that certain results are positive semi-definite (see
2c and 4 on PS 1 for example). What is a positive semi-definite matrix? A matrix, M , is positive
semi-definite if and only if it satisfies any of the following:

• M is congruent with a diagonal matrix, N , with non-negative real entries.

(i) Note that M is defined to be congruent with N if there exists an invertible matrix P such
that N = P ′MP .

(ii) For positive semi-definiteness, N must be diagonal with non-negative real entries.

• M is symmetric, and all its eigenvalues are real and non-negative.

• M is symmetric, and all its principal minors are non-negative.

• z′Mz ≥ 0 for every non-zero real column vector z.

(i) This is the strict definition of positive semi-definiteness.

In practice, we usually use the fourth bullet point the most when proving that a matrix is PSD.

1.10 Closing Remarks

This semester will be very hard. The course is challenging, highly mathematical, and rigorous. A few
tips:

(i) Make use of Marinho’s office hours. He is very good at this and very helpful. Instead of
struggling with a problem for many hours, talk to Marinho.

(ii) Focus on the main specification and proofs for each section. There is a lot to learn and
all of it will be useful to you. But if you find yourself short on time, focus on learning the
basic consistency, asymptotic normality, and identification proofs very well.

(iii) I am available for questions and assistance. Last semester I told you to email me with
questions in advance because the material can be hard. That is doubly true this semester.
I do not know this material nearly as well as Marinho, so I will need time to prepare good
answers for your questions. That being said, feel free to stop by my office with questions
you have in the moment and I will do my best.
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Chapter 2

System OLS and Generalized Least
Squares

2.1 System OLS Theory

Last semester, we saw how we could use OLS to estimate equations of interest. To begin this semester,
we look at the case where we have multiple equations that appear to be unrelated at first glance. These
Seemingly Unrelated Regressions can be written in a system of equations as follows:

y1 = X ′
1β1 + ϵ1

...

yG = X ′
GβG + ϵG

where both Xg and βg are K × 1.

We can take advantage of possible correlation across the error terms, ϵg, by using SOLS. We want
to do this to (1) eliminate possible bias in our estimates of our slope coefficients and to (2) increase
the efficiency of our estimates. To do this, we first stack each part of our regression equations into one
vector:

Y =


y1
...
yG

X =


X1

...
XG

β =


β1

...
βG

 ϵ =


ϵ1
...
ϵG


and write our normal regression equation: Y = X ′β + ϵ.

We have the same assumptions for SOLS to be identified, consistent, and asymptotically normal
as we did for OLS. First, we assume that E[X ′ϵ] = 0. This is called the orthogonality or exogeneity
condition.

The second assumption we make is that E[X ′X] has full rank. This assumption allows us to invert
the matrix and identify β.

15
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2.1.1 Identification Proof

Start with the regression equation:

Y = Xβ + ϵ

X ′Y = X ′Xβ +X ′ϵ Take E[·]:

E[X ′Y ] = E[X ′X]β + E[X ′ϵ] Using assumption 1:

E[X ′Y ] = E[X ′X]β Using assumption 2:

E[X ′X]−1E[X ′Y ] = β

2.1.2 Consistency Proof

We first start by applying the analogy principle to the identified β:

β̂ =

(
1

n

n∑
i=1

X ′X

)−1(
1

n

n∑
i=1

X ′Y

)

=

(
1

n

n∑
i=1

X ′X

)−1(
1

n

n∑
i=1

X ′(Xβ + ϵ)

)

= β +

(
1

n

n∑
i=1

X ′X

)−1(
1

n

n∑
i=1

X ′ϵ

)
(∗)

P−→ β + E[X ′X]−1E[X ′ϵ] Using assumption 1:

= β

2.1.3 Asymptotic Normality Proof

Starting from equation (∗) from the consistency proof:

β̂ = β +

(
1

n

n∑
i=1

X ′X

)−1(
1

n

n∑
i=1

X ′ϵ

)

β̂ − β =

(
1

n

n∑
i=1

X ′X

)−1(
1

n

n∑
i=1

X ′ϵ

)
√
n(β̂ − β) =

(
1

n

n∑
i=1

X ′X

)−1(
1√
n

n∑
i=1

X ′ϵ

)
d−→ E[X ′X]−1 N

(
0,E[X ′ϵϵ′X]

)
= N

(
0,E[X ′X]−1E[X ′ϵϵ′X]E[X ′X]−1

)
Through these three proofs, we have shown that the SOLS estimator is identified, consistent, and
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asymptotically normal.

2.2 GLS Theory

Generalized Least Squares uses a transformation of the SOLS structure that we built above to produce
a more efficient estimate than SOLS and a more accurate estimate than OLS equation by equation.
Given that the assumptions listed further below are satisfied, GLS is BLUE (best linear unbiased
estimator).

How do we begin setting up GLS? We start with our SOLS structure and pre-multiply by Ω−1/2:

Y = Xβ + ϵ

Ω−1/2Y = Ω−1/2Xβ +Ω−1/2ϵ

X ′Ω−1/2Ω−1/2Y = X ′Ω−1/2Ω−1/2Xβ +X ′Ω−1/2Ω−1/2ϵ

X ′Ω−1Y = X ′Ω−1Xβ +X ′Ω−1ϵ

E[X ′Ω−1Y ] = E[X ′Ω−1X]β + E[X ′Ω−1ϵ]

Now, we need to find a matrix for Ω such that the new model is homoskedastic
(
i.e. E[Ω−1/2ϵϵ′Ω−1/2] = I

)
.

The solution is intuitively Ω−1/2 = E[ϵϵ′]−1/2.

To proceed with identification, and eventually to prove consistency and asymptotic normality, we
use two key assumptions. First, we assume that E[Xg⊗ϵg′ ]. This assumption states that there cannot
be correlation between any right-hand side variable in any equation and any error term in any equation.
This is a very strong assumption.

The second assumption is that Ω is positive definite (to allow for the Cholesky decomposition
during the derivation) and that E[X ′Ω−1X] is invertible. Assuming both of these, we continue on in
identifying β:

E[X ′Ω−1Y ] = E[X ′Ω−1X]β + E[X ′Ω−1ϵ] Using assumption 1:

E[X ′Ω−1Y ] = E[X ′Ω−1X]β Using assumption 2:

E[X ′Ω−1X]−1E[X ′Ω−1Y ] = β

To estimate, we simply apply the analogy principle:

β̂GLS =

(
1

n

n∑
i=1

X ′Ω−1X

)−1(
1

n

n∑
i=1

X ′Ω−1Y

)

Let’s next show that the GLS estimator is consistent. Starting with the analogy principle above:
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β̂GLS =

(
1

n

n∑
i=1

X ′Ω−1X

)−1(
1

n

n∑
i=1

X ′Ω−1Y

)

=

(
1

n

n∑
i=1

X ′Ω−1X

)−1(
1

n

n∑
i=1

X ′Ω−1(Xβ + ϵ)

)

= β +

(
1

n

n∑
i=1

X ′Ω−1X

)−1(
1

n

n∑
i=1

X ′Ω−1ϵ

)
(∗∗)

P−→ β + E[X ′Ω−1X]−1E[X ′Ω−1ϵ]

= β + E[X ′Ω−1X]−1E[ϵ⊗X] · vec(Ω−1)

= β

So β̂GLS is consistent for β. Let’s look at asymptotic normality next. Starting from equation (∗∗)
above:

β̂GLS = β +

(
1

n

n∑
i=1

X ′Ω−1X

)−1(
1

n

n∑
i=1

X ′Ω−1ϵ

)

β̂GLS − β =

(
1

n

n∑
i=1

X ′Ω−1X

)−1(
1

n

n∑
i=1

X ′Ω−1ϵ

)
√
n(β̂GLS − β) =

(
1

n

n∑
i=1

X ′Ω−1X

)−1(
1√
n

n∑
i=1

X ′Ω−1ϵ

)
P−→ E[X ′Ω−1X]−1 N

(
0,E[X ′Ω−1ϵϵ′Ω−1X]

)
= N

(
0,E[X ′Ω−1X]−1 E[X ′Ω−1ϵϵ′Ω−1X] E[X ′Ω−1X]−1

)
Through these proofs, we have shown that the GLS estimator is identified, consistent, and asymp-
totically normal after using our two assumptions. On your homework, you will show that the GLS
estimator is more efficient than the SOLS estimator.

2.2.1 FGLS Theory

Going through these proofs, we should notice that GLS is actually not feasible. Let’s look at the
estimator β̂GLS again:

β̂GLS =

(
1

n

n∑
i=1

X ′Ω−1X

)−1(
1

n

n∑
i=1

X ′Ω−1Y

)

Note that Ω is not known! Recall that Ω = E[ϵϵ′]. To conduct GLS, we need to estimate Ω. Let’s
use the analogy principle:
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Ω̃ =
1

n

n∑
i=1

ϵϵ′

But we do not know ϵ either, so we need to estimate that too:

Ω̂ =
1

n

n∑
i=1

ϵ̂ϵ̂′

and now we can do GLS. We call this formulation Feasible Generalized Least Squares, or FGLS:

β̂FGLS =

(
1

n

n∑
i=1

X ′Ω̂
−1

X

)−1(
1

n

n∑
i=1

X ′Ω̂
−1

Y

)

Marinho proved the consistency of FGLS in class and started the asymptotic normality proof. On
your homework, you will show that the estimated asymptotic variance for β̂FGLS is consistent.

In practice, how do we go about estimating FGLS?

(1) Run SOLS on the model before transforming with Ω and calculate the residuals: ϵ̂ =

Y −Xβ̂SOLS .

(2) Use the SOLS residuals, ϵ̂, to find Ω̂.

(3) Calculate β̂FGLS using Ω̂.

(4) Calculate the estimated asymptotic variance using Ω̂ and ϵ̂.

Before moving on to Matlab, let’s look at a decision tree for when to use FGLS and when to use
SOLS (where u in the figure is the same as the ϵ we have been using):

Figure 2.1: We can see that we always start with the exogeneity condition. If the right-hand side
variables are the same in each equation, or if Ω is the diagonal, then we use SOLS. Otherwise, we look
to see if E[X ⊗ ϵ] = 0. If this condition is satisfied, then we use FGLS. If not, we use SOLS.
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2.3 Matlab Exercise

We went through a Matlab example that is similar to the exercise you are asked to do on the problem
set. Come see me during office hours or send me an email if you need help. I have attached a snapshot
of the data generating process below:

Figure 2.2
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Instrumental Variables

3.1 Instrumental Variable Theory

In most equations that we want to estimate empirically, omitted variable bias or other biases end up
violating one of our OLS assumptions: orthoganility between the regressors and the error term. This
problem is known as the endogeneity problem.

How do we fix this issue? We can use what is known as an instrumental variable, often designated
as zk. A valid instrument satisfies three conditions:

1. zk is not already part of the model.

2. zk is uncorrelated with the error term (E[zkui] = 0).

3. zk is correlated with the right-hand side regressors ( so that E[zkxi] ̸= 0 and is full rank).

The following figure illustrates these three requirements:

Figure 3.1: Note how both Xi and Ui impact Yi. We can’t disentangle the effect of Xi on Yi from
the effect of Ui on Yi because of the intersection between Xi and Ui. The instrument only affects Yi

through Xi.

21
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3.1.1 Identification

Let’s go through the identification proof for IV. Define x ≡ (1, x1, x2, ..., xk), β ≡ (β0, β1, ..., βk), and
z ≡ (1, x1, x2, ..., xk−1, zk). Starting with our regression equation:

yi = xiβ + ui

z′iyi = z′ixiβ + z′iui

E[z′iyi] = E[z′ixi]β + E[z′iui] Using assumption 2:

E[z′iyi] = E[z′ixi]β Using assumption 3:

E[z′ixi]
−1E[z′iyi] = β

So β is identified.

3.1.2 Consistency

Using the analogy principle and proceeding from there:

β̂IV =

(
1

n

n∑
i=1

z′ixi

)−1(
1

n

n∑
i=1

z′iyi

)

=

(
1

n

n∑
i=1

z′ixi

)−1(
1

n

n∑
i=1

z′i(xiβ + ui)

)

= β +

(
1

n

n∑
i=1

z′ixi

)−1(
1

n

n∑
i=1

z′iui

)
P−→ β + E[z′ixi]

−1E[z′iui]

= β

The IV estimator is also asymptotically normal. I leave this to you to derive in your own time. If you
need help, come see me during my office hours.

3.2 Quiz 2 Previous Problem

Consider the following system of equations:

yi = β1xi1 + β2xi2 + ui

xi1 = πxi2 + vi

where data are i.i.d. across i = 1, ..., N , all variables are scalars, E[ui] = 0,E[vi] = 0, E[uixi2] = 0,
E[uixi1] ̸= 0, E[uivi] ̸= 0, E[xi2vi] = 0, E[x2

i2] ̸= 0, π ̸= 0, and the researcher observes a sample of
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(yi, xi1, xi2).

3.2.1 Part a

Suppose β2 = 0. Write down the IV estimator of β1 that uses xi2 as an instrument for xi1. Show
this IV estimator is consistent and asymptotically normal. Write down a consistent estimator for the
asymptotic variance of this IV estimator.

Solution

yi = β1xi1 + ui

xi2yi = xi2xi1β1 + xi2ui

E[xi2yi] = E[xi2xi1]β1 + E[xi2ui]

β1 = E[xi2xi1]
−1E[xi2yi]

β̂1 =

(
1

n

n∑
i=1

xi2xi1

)−1(
1

n

n∑
i=1

xi2yi

)

=

(
1

n

n∑
i=1

xi2xi1

)−1(
1

n

n∑
i=1

xi2(xi1β1 + ui)

)

= β1 +

(
1

n

n∑
i=1

xi2xi1

)−1(
1

n

n∑
i=1

xi2ui

)
(∗)

P−→ β1 + E[xi2xi1]
−1E[xi2ui] = β1

So we have shown that it is consistent. Let’s show it is asymptotically normal starting from (∗):

β̂1 = β1 +

(
1

n

n∑
i=1

xi2xi1

)−1(
1

n

n∑
i=1

xi2ui

)
√
n(β̂1 − β) =

(
1

n

n∑
i=1

xi2xi1

)−1(
1√
n

n∑
i=1

xi2ui

)
d−→ E[xi2xi1]

−1 N
(
0,E[x2

i2u
2
i ]
)

= N
(
0,E[xi2xi1]

−2E[x2
i2u

2
i ]
)

ÂV AR =

(
1

n

n∑
i=1

xi2xi1

)−2(
1

n

n∑
i=1

x2
i2û

2
i

)

where ûi = yi − xi1β̂1.
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3.2.2 Part b

Suppose now β2 ̸= 0. xi2 was an exogenous excluded instrument in part(a) but now it is not excluded.
The researcher creates a variable zi2 = xi2+ηi, where ηi is randomly generated data that are indepen-
dent of everything else and have mean zero. The researcher claims that he can consistently estimate
(β1, β2) by using zi2 as an instrument for xi1. Is the researcher correct?

Solution

Generating an instrument this way will fail the rank condition:

β̂ =

(
1

n

n∑
i=1

[
xi2

zi2

] [
xi1 xi2

])−1(
1

n

n∑
i=1

[
xi2

zi2

]
yi

)

=

(
1

n

n∑
i=1

[
xi2xi1 x2

i2

zi2xi1 zi2xi2

])−1(
1

n

n∑
i=1

[
xi2yi

zi2yi

])

If we just look at the first term:

(
1

n

n∑
i=1

[
xi2xi1 x2

i2

zi2xi1 zi2xi2

])−1

=

(
1

n

n∑
i=1

[
xi2xi1 x2

i2

(xi2 + ηi)xi1 (xi2 + ηi)xi2

])−1

=

(
1

n

n∑
i=1

[
xi2xi1 x2

i2

xi2xi1 + ηixi1 xi2xi1 + ηixi2

])−1

P−→

[
E[xi2xi1] E[x2

i2]

E[xi2xi1 + ηixi1] E[x2
i2 + xi2ηi]

]−1

=

[
E[xi2xi1] E[x2

i2]

E[xi2xi1] E[x2
i2]

]−1

Note that this is not invertible, so this instrument will not consistently estimate β.

3.2.3 Part c

Consider the IV estimator in part(a). Is it possible to make that IV estimator more efficient if we use
zi2 instead of xi2 as an instrument for xi1? Assume E[u2

i |zi2]E[u2
i |xi2] = σ2.
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Solution

First, we find AV ARa:

AV ARa =
E[x2

i2u
2
i ]

E[xi2xi1]2

=
Exi2 [x

2
i2E[u2

i |xi2]]

E[xi2(xi2π + vi)]2

=
σ2E[x2

i2]

π2E[x2
i2]

2

=
σ2

π2E[x2
i2]

Then we find AV ARb using the same asymptotic formula:

AV ARb =
E[z2i2u2

i ]

E[zi2xi1]2

=
σ2E[z2i2]

E[xi1(xi2 + ηi)]2

=
σ2E[(xi2 + ηi)

2]

(E[xi2xi1] + E[ηixi1])2

=
σ2E[x2

i2 + 2xi2ηi + η2i ]

π2E[x2
i2]

2

=
σ2

π2E[x2
i2]

+
σ2E[η2i ]
π2E[x2

i2]
2

= AV ARa +
σ2E[η2i ]
π2E[x2

i2]
2
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Chapter 4

Two-Stage Least Squares

4.1 Two-Stage Least Squares

Technically, IV is a method for one endogenous regressor and one instrument. Two-stage least squares,
2SLS, allows for the use of multiple instruments. To do so, redefine z ≡ (1, x1, ..., xk−1, z1, ..., zm).

2SLS, in effect, allows us to find the highest correlation between our instruments and our endogenous
variable(s). A strong correlation helps ensure that the rank condition is satisfied and that our estimates
are consistent.

4.1.1 Identification

Let’s derive the 2SLS estimator. We start with what is called the 1st stage projection, where we
project the instruments and exogenous regressors, z, on our endogenous regressors, x:

x∗ = zπ

where π ≡ E[z′z]−1E[z′x], the linear projection of z on x. Next we premultiply x∗ with our standard
regression equation:

y = xβ + u

x∗′y = x∗′xβ + x∗′u

27
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E[x∗′y] = E[x∗′x]β + E[x∗′u]

E[x∗′y] = E[x∗′x]β + E[x′z(z′z)−1z′u]

E[x∗′y] = E[x∗′x]β

β = E[x∗′x]−1E[x∗′y]

β =
(
E[x′z]E[z′z]−1E[z′x]

)−1 (E[x′z]E[z′z]−1E[z′y]
)

And if we apply the analogy principle:

β̂2SLS =

( 1

n

n∑
i=1

x′z

)(
1

n

n∑
i=1

z′z

)−1(
1

n

n∑
i=1

z′x

)−1

·

( 1

n

n∑
i=1

x′z

)(
1

n

n∑
i=1

z′z

)−1(
1

n

n∑
i=1

z′y

)
4.1.2 Consistency

To make notation easier, define Q̂xz ≡
(
1
n

∑n
i=1 x

′z
)
, Q̂zz ≡

(
1
n

∑n
i=1 z

′z
)
, Q̂zx ≡

(
1
n

∑n
i=1 z

′x
)
, and

Q̂zu ≡
(
1
n

∑n
i=1 z

′u
)
. Starting from the analogy principle:

β̂2SLS =
(
Q̂xzQ̂

−1
zz Q̂zx

)−1 (
Q̂xzQ̂

−1
zz Q̂zy

)
=
(
Q̂xzQ̂

−1
zz Q̂zx

)−1
(
Q̂xzQ̂

−1
zz

1

n

n∑
i=1

z′(xβ + u)

)

= β +
(
Q̂xzQ̂

−1
zz Q̂zx

)−1 (
Q̂xzQ̂

−1
zz Q̂zu

)
(∗)

P−→ β +
(
QxzQ

−1
zz Qzx

)−1 (
QxzQ

−1
zz Qzu

)
= β

4.1.3 Asymptotic Normality

We start from equation (∗) above:

β̂2SLS = β +
(
Q̂xzQ̂

−1
zz Q̂zx

)−1 (
Q̂xzQ̂

−1
zz Q̂zu

)
β̂2SLS − β =

(
Q̂xzQ̂

−1
zz Q̂zx

)−1 (
Q̂xzQ̂

−1
zz Q̂zu

)
√
n(β̂2SLS − β) =

(
Q̂xzQ̂

−1
zz Q̂zx

)−1 (
Q̂xzQ̂

−1
zz

√
nQ̂zu

)
d−→
(
QxzQ

−1
zz Qzx

)−1 (
QxzQ

−1
zz

)
N (0,E[z′uu′z])

= N
(
0,
(
QxzQ

−1
zz Qzx

)−1 (
QxzQ

−1
zz

)
E[z′uu′z]

(
Q−1

zz Qxz

) (
QxzQ

−1
zz Qzx

)−1
)



4.2. CONTROL FUNCTION 29

4.1.4 Miscellaneous Information

First, a few brief warnings about 2SLS:

(i) OLS + OLS (running OLS on the first stage projection and then running OLS on the
second stage with the projected x on the right hand side) is NOT the same as 2SLS. If
you use OLS + OLS, your standard errors will not be accurate.

(ii) Always include all exogenous variables in the first stage projection. If you do not, 2SLS is
not consistent.

Second, a small decision tree:

Figure 4.1: Where L ≡ the number of instruments and K ≡ the number of endogenous regressors.

4.2 Control Function

The goal of this approach is to determine if we have an endogenous regressor. Define z ≡ [z1, z2],
where z1 ≡ included exogenous regressors and the constant and z2 ≡ excluded instruments. We first
set up a structural equation:

y1 = z1δ1 + α1y2 + u1

where y2 ≡ included potentially endogenous variable. Because of the way we structured z, we know
that E[z′u1] = 0. Now we set-up a reduced-form equation for y2:

y2 = zπ2 + ν2
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where π2 = E[z′z]−1E[z′y2]. We assume that E[z′ν2] = 0. Note that y2 is endogenous if the structural
error, u1, is correlated with the reduced form error, ν2. We can therefore set up an equation modelling
this:

u1 = ρ1ν2 + ε1

where ρ1 is the linear projection of ν2 on u1. We assume that E[ν2ε1] = 0. Note that E[z′ε1] =
E[z′(u1 − ρ1ν2)] = 0. Subbing this equation into the structural equation yields:

y1 = z1δ1 + α1y2 + ρ1ν2 + ε1

The intuition: OLS is consistent if z1, y2, and ν2 are uncorrelated with ε1. Essentially, we are testing
to see if ρ1 = 0. But how do we do this?

We do not observe ν2 directly. But we will use our usual trick for estimating errors: run OLS on the
reduced form equation. After obtaining ν̂2, we can use those estimated residuals in the transformed
structural equation. Run OLS on this transformed equation using robust standard errors. Then use
the Wald test to determine whether ρ1 = 0. If ρ1 = 0, then we conclude that y2 is exogenous.

4.3 Practice Problem: Wooldridge 5.1

Consider the following model:

y1 = z1δ1 + α1y2 + u1

y2 = zπ2 + v2

where y2 is the suspected endogenous variable and z is the vector of all exogenous variables. The
second equation is the reduced form for y2. Assume that z has at least one more element than z1. We
know that one estimator of (δ1, α1) is the 2SLS estimator using instruments. Consider an alternative
estimator: (a) estimate the reduced form by OLS and save the residuals v̂2 and (b) estimate the
following equation by OLS:

y1 = z1δ1 + α1y2 + ρ1v̂2 + ε1 (4.1)

Show that the OLS estimates of δ1 and α1 from this regression are identical to the 2SLS estimators.
Hint: Use the partitioned regression algebra of OLS.

4.3.1 Solution

Define x1 ≡ [z1 y2] and let β̂ = [β̂1 ρ̂1] = [δ̂1 α̂1 ρ̂1]. To partition the regression we:
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(i) Regress x1 on v̂2 and get residuals ẍ.

(ii) Regress y1 on ẍ.

We partition regression (1) in this way to specifically estimate the slope coefficients on z1 and y2.We
start with (i) to find ẍ:

x1 = v̂2W + ẍ

ẍ = x1 − v̂2W[
ẍ1

ẍ2

]
=

[
z1

y2

]
− v̂2(v̂

′
2v̂2)

−1

(
v̂′2

[
z1

y2

])

=

[
z1

y2

]
− v̂2(v̂

′
2v̂2)

−1

[
0

v̂′2y2

]

Remember that we can decompose a variable into its projection and the residual. Therefore, we can
write y2 as:

y2 = ŷ2 + v̂2

Subbing this in gives us:

=

[
z1

y2

]
− v̂2(v̂

′
2v̂2)

−1

[
0

v̂′2(ŷ2 + v̂2)

]

=

[
z1

y2

]
− v̂2(v̂

′
2v̂2)

−1

[
0

v̂′2ŷ2 + v̂′2v̂2

]

=

[
z1

y2

]
− v̂2(v̂

′
2v̂2)

−1

[
0

v̂′2v̂2

]

=

[
z1

y2

]
− v̂2

[
0

1

]

=

[
z1

ŷ2 − v̂2

]
−

[
0

v̂2

]
[
ẍ1

ẍ2

]
=

[
z1

ŷ2

]

Now that we have regressed x1 on v̂2 and gotten the residuals ẍ, we can regress y1 on ẍ:
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y1 = ẍ′β1 + u1

=
[
z1 ŷ2

] [δ1
α2

]
+ u1

= z1δ1 + ŷ2α1 + u1

But notice that this is the second stage of 2SLS! By doing OLS on this regression, we obtain the same
estimator that 2SLS provides us. So we can conclude that β̂OLS = β̂2SLS when using the control
function approach.

4.4 Durbin-Wu-Hausman Test

The Durbin-Wu-Hausman test is another way to test the endogeneity of a regressor. The hypotheses
are as follows:

H0 : Exogeneity Ha : Endogeneity

β̂OLS
P−→ β β̂OLS

P−→ β +∆

β̂2SLS
P−→ β β̂2SLS

P−→ β

The basic idea is to compare the slope coefficients under OLS and 2SLS. Ideally, we would like to
run a Wald test using

√
n
(
β̂OLS − β̂2SLS

)
. The asymptotic variance of this function is not invertible

though. As such, we must develop a more clever approach. We first look at the structural equation:

y1 = z1δ1 + y2α1 + u1

Estimate this equation using OLS first to get α̂1. After finding α̂1, manipulate the equation to get
an expression for δ̂OLS

1 :

y1 = z1δ1 + y2α̂1 + u1

y1 − α̂1y2 = z1δ1 + u1

z′1(y1 − α̂1y2) = z′1z1δ1 + z′1u1

E[z′1(y1 − α̂1y2)] = E[z′1z1]δ1 + E[z′1u1]

δ1 = E[z′1z1]−1 E[z′1(y1 − α̂1y2)]

δ̂OLS
1 =

(
1

n

n∑
i=1

z′i1zi1

)−1(
1

n

n∑
i=1

z′i1(yi1 − α̂1yi2)

)
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We can go through similar steps to find δ̂2SLS
1 , using the 2SLS estimator for α̂1 and substituting

in the first stage projection dependent variable:

δ̂2SLS
1 =

(
1

n

n∑
i=1

z′i1zi1

)−1(
1

n

n∑
i=1

z′i1(yi1 − α̂1ŷi2)

)

=

(
1

n

n∑
i=1

z′i1zi1

)−1(
1

n

n∑
i=1

z′i1(yi1 − α̂1Pzyi2)

)

where Pz ≡ z(z′z)−1z′. Now we can compare the two estimators by subtracting one from the other:

δ̂2SLS
1 − δ̂OLS

1 = (z′1z1)
−1
(
z′1(y1 − Pzy2α̂

2SLS
1 )

)
− (z′1z1)

−1
(
z′1(y1 − y2α̂

OLS
1 )

)
= (z′1z1)

−1z′1
(
Pzy2α̂

2SLS
1 − y2α̂

OLS
1

)
= (z′1z1)

−1z′1y2(α̂
2SLS
1 − α̂OLS

1 )

Test to see if α̂2SLS
1 − α̂OLS

1 = 0, as the covariance matrix of this difference is invertible. If we
cannot statistically distinguish the difference from zero, we fail to reject the null hypothesis (that the
variable is exogenous).

4.5 Overidentification Test

The overidentification test provides a check on the exogeneity condition on the instrument set - that
E[z′u] = 0. Before continuing, note that to conduct this test, we need more instruments than endoge-
nous variables. The extra instruments overidentify the model and provide us with the information
needed to verify the exogeneity assumption. We start again with the structural control function equa-
tion:

y1 = z1δ1 + y2α2 + u1

Define x ≡ [z1, y1] and again define z ≡ [z1, z2]. The theory behind this test is complicated, so we
focus on how to implement the test here:

(1) Run 2SLS on the structural model to find û1.

(2) Calculate σ̂2 = 1
n

∑n
i=1 û

2
1.

(3) Calculate Q̂zx = 1
n

∑n
i=1 z

′
ixi.

(4) Calculate the annihilator matrix Mzx = I − Q̂zx[Q̂
′
zxQ̂zx]

−1Q̂′
zx.

(5) Calculate η̂ =
(
1
n

∑n
i=1 z

′
izi
)−1 ( 1

n

∑n
i=1 z

′
iui

)
, the OLS estimator of z on u1.

(6) Calculate the test statistic S =
(

n
σ̂2

)
(η̂′Mzxη̂).
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(7) Compare S to χ2
L−K distribution, where L ≡ number of exogenous regressors and instru-

ments and K ≡ number of included regressors.

(8) Reject H0 at the 1% level.

4.6 Weak Instruments

Sometimes our instruments barely satisfy the rank condition (see figure 2). In these cases, 2SLS and IV
may behave somewhat erratically. We want to test to see if the instruments we are using are “strong”
instruments.

Figure 4.2

4.6.1 Stock-Yogo Test

The first test for weak instruments is the Stock-Yogo Test. Applied microeconomics papers commonly
use this test. To begin with, we look at the first stage projection:

y2 = z1π1 + z2π2 + ν2

Our null hypothesis, H0, is that π2 = 0. We do an F-test on the first stage after running 2SLS to
determine whether z2 should be included in the projection. Intuitively, we are seeing if the instruments
are actually correlated with our endogenous variable (i.e. if E[z′2y2] = 0). For a model with one
endogenous variable and one instrument, we have a critical value of 16.4. At this level, we can be sure
that the distortion level on our slope estimates is ≤ 5%. Figure 3 is a decision tree providing a guide
through the Stock-Yogo procedure:
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Figure 4.3

4.6.2 Lee-Moreira-McCrary-Porter (2020)

Lee-Moreira-McCrary-Porter (2020) updates the Stock-Yogo paper’s guidelines for a model with one
endogenous variable and one excluded instrument. For zero distortion of the second stage 5% t-test4,
we want a first stage projection F-test value of 104.7. The paper also provides a table of critical values
for the t-test to be rejected at the 5% level if the F-statistic is not high enough. This paper is currently
the paper you should use for testing weak instruments.

4.7 Problem Set 2, Question 6

Suppose you are given the following structural equation:

y = β0 + β1x1 + β2x2 + ...+ βKxK + u

where E[u] = 0. You are interested in β1. The variables (x2, ..., xK) are observable controls. All of
these factors are correlated with x1. Also suppose that x1 is endogenous and that we have a valid
instrument, z1 for for x1. We know that β̂

2SLS
is consistent for β.

A common belief among applied researchers is that we do not need to worry about the exogeneity
of (x2, ..., xK) as long as we only care about x1. Therefore, we only need a valid instrument for x1 and
the 2SLS estimator.

4.7.1 Part a

Suppose z1 is independent of (x2, ..., xK , u), z1 is correlated with x1, and (x2, ..., xK) are exogenous.
Does controlling for (x2, ..., xK) matter for the consistency of β̂2SLS

1 ?

4Tests with size ≤ 0.455 will always be distorted
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Solution

We know that β̂2SLS is consistent with all of the control variables, as we showed last recitation. But
what about without all the controls? Note that the error term, ε, is now:

ε = u+ β2(x2 − E[x2]) + ...+ βK(xK − E[xK ])

and that the constant, β̃0, is now:

β̃0 = β0 + E[x2] + ...+ E[xK ]

Let β = [β̃0 β1]
′ and x = [1 x1]. We rewrite our structural equation as:

y = xβ + ε

Recall the two assumptions for 2SLS to be consistent. First, we need E[z1ε] = 0. Secondly, we
need E[z1x1] ̸= 0. We start by verifying the first assumption:

E[z1ε] = E[z1 (u+ β2(x2 − E[x2]) + ...+ βK(xK − E[xK ]))]

= E[z1u] + E[z1(x2 − E[x2])β2] + E[z1(xK − E[xK ])]

= 0

So assumption one is satisfied. The second assumption, E[z1x1] ̸= 0, is satisfied through the given
information in the problem. Therefore, we know that the 2SLS estimator is consistent for the true β1.

4.7.2 Part b

Now assume that we only have two right-hand-side variables. The structural equation is now:

y = β0 + β1x1 + β2x2 + u

Suppose that x1 and x2 are both endogenous, that z1 is exogenous and affects x1 after controlling
for x2, and that x2 is independent of z1. Is the 2SLS estimator, β̂2SLS

1 , consistent for β1 when x2 is
treated as exogenous?

Solution

We know that x2 is endogenous. So start by looking at how x2 is correlated with u:
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u = θ0 + θ2x2 + v2

Note that the error, v2, will have a mean of zero. Plug this linear projection into the structural
equation:

y = (β0 + θ0) + β1x1 + (β2 + θ2)x2 + v2

By treating x2 as exogenous, we are effectively estimating this equation. To determine if β̂2SLS
1 is

consistent for β1, we again look at the two sufficient assumptions for consistency. First, whether the
instrument is exogenous:

E[z1v2] = E[z1(u− θ0 − θ2x2)]

= E[z1u]− E[z1]θ0 − E[z1x2]θ2

= −E[z1]θ0 − E[z1]E[x2]θ2

= −E[z1] (θ0 − θ2E[x2])

= −E[z1]E[u]

= −E[z1u]

= 0

Once again assumption one is sastisfied. In addition, E[z1x1] ̸= 0 is given, so β̂2SLS
1 is consistent for

β1.

4.7.3 Part c

Suppose now that z1 is correlated with x2 but still uncorrelated with u. Similar to before, x1 and
x2 are still endogenous and z1 still affects x1 after controlling for x2. Consider the same structural
equation as in part (b). If the x2 is treated as exogenous, is β̂2SLS

1 still consistent for β1?

Solution

Since the structure of the problem is the same, we start by looking at assumption 1 again:

E[z1v2] = E[z1v2]− E[z1]E[v2]

= Cov(z1, v2)

= Cov (z1, (u− θ0 − θ2x2))

= Cov(z1, u)− Cov(z1, θ0)− θ2Cov(z1, x2)

= −θ2Cov(z1, x2)
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This is not zero, so the first assumption fails. The covariance term cannot cancel out elsewhere in the
proof for consistency, so the 2SLS estimator will now not be consistent.

4.8 Problem Set 3, Question 1 Parts (a)-(d)

Suppose we are interested in the effect of having more than one child on the number of weeks worked
by mothers:

weeks = β0 + β1 second+ u

where second is a dummy that equals one if the mother has two or more children. We are concerned
that second is correlated with the error term, u, so we use an instrument, twin1st - a dummy variable
that equals one if the first pregnancy ended with twins.

4.8.1 Part a

Consider the following OLS regression outputs from Stata. Write down the OLS and IV estimate for
β1. Explain the difference between them intuitively.

Solution

To find the OLS estimate, we look at the regression of weeks on second. The coefficient is -6.8.
To find the IV estimate, we look at an alternative IV estimator (which you will prove on PS 2):

β̂IV =
∂y/∂z

∂x/∂z

In this case, we want how twin1st affects weeks over how twin1st affects second. So:
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β̂IV =
−0.99

.2746

= −3.605

The difference between the two estimates is 3.2 weeks per year. OLS overestimates the affect of
more than one child on mother’s weeks worked. Therefore, we can conclude there are omitted variables.

4.8.2 Part b

Consider the following two OLS regressions. What is the IV estimate for β1 now? Why is this estimate
not very different than the one found in part (a)?

Solution

Using the same alternative estimator for IV:

β̂IV =
−1.09

.285

= −3.841

This estimate is not different than the estimate in part (a) because twin1st is probably uncorre-
lated with the rest of the mother’s characteristics, and therefore still uncorrelated with u. So the IV
estimator’s consistency is not affected.
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4.8.3 Part c

Based on the regressions above, do you think that the 5% t-test for the null hypothesis H0 : β1 = 0

will have any size distortion for weak instruments?

Solution

For no distortion in the hypothesis test on the slope coefficient, we need an F-stat of 104.7 according
to Lee-Moreira-McCrary-Porter. We first need to find the t-statistic of second on twin1st :

t = .2848033/.0055559

= 51.26

and then secondly square this t-statistic:

F = (51.26)2

= 2627.5876

This F-statistic is far larger than the required value of 104.7. Therefore, there should be no
distortion in our test.

4.8.4 Part d

Now we create the variable resid, the OLS residuals from the reduced form equation in part (b). We
then run OLS on an equations regressing weeks on second, resid, and all the controls. Test whether
second is exogenous. Are the standard errors reported correct?

Solution

Recall the control function from IV. We want to test whether the coefficient on the variable resid is
zero. We construct the t-statistic:

t =
−6.554

1.521

= −4.31
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Therefore, we reject the null hypothesis and conclude that second is endogenous. We also know that
if the coefficient on resid is not zero, then the standard errors are not correct because we are using a
generated variable instead of the true value of the first stage projection residuals.

4.9 Analytical Derivations from Quiz 3

Quiz three required the Hausman test and Stock-Yogo procedure. Below are reminders of what these
are.

4.9.1 Hausman Test

Recall the null hypothesis:

H0 : β̂2SLS − β̂OLS = 0

Because we are only testing one value (i.e. β is not a vector), we can use a t-test. To conduct a
t-test, we need to find the standard error of the asymptotic distribution of the difference between the
β̂’s. I think you saw this in class, but I will rederive the result from Hausman (1978):

Asymptotic Variance

Lemma: Consider two estimators β̂0 and β̂1, which are both consistent and asymptotically nor-
mally distributed with β̂0 attaining the asymptotic Cramer-Rao bound so

√
n(β̂0 − β) ∼ N(0, V0) and

√
n(β̂1 − β) ∼ N(0, V1), where V0 is the inverse of Fisher’s information matrix. Consider q̂ = β̂1 − β̂0.

Then the limiting distributions of
√
n(β̂0 − β) and

√
nq̂ have zero covariance, C(β̂0, q̂) = 0.

Proof (by contradiction): Suppose β̂0 and q̂ are not orthogonal. Define a new estimator β̂2 =

β̂0 + rAq̂, where r is a scalar and A is an arbitrary matrix to be chosen. The new estimator is
consistent and asymptotically normal with asymptotic variance:

V (β̂2) = V (β̂0) + rAC(β̂0, q̂) + rC ′(β̂0, q̂)A
′ + r2AV (q̂)A′

V (β̂2)− V (β̂0) = rAC(β̂0, q̂) + rC ′(β̂0, q̂)A
′ + r2AV (q̂)A′

Let F (r) = V (β̂2)− V (β̂0). Now take the derivative with respect to r:

F ′(r) = AC + C ′A′ + 2rAV (q̂)A′

Now choose A = −C ′. Noting that C is symmetric, we get:



42 CHAPTER 4. TWO-STAGE LEAST SQUARES

F ′(r) = −2C ′C + 2rC ′V (q̂)C

Set r = 0. Then F ′(r) = −2C ′C ≤ 0, meaning that we are at a maximum value. By setting r = 0,
F (0) = 0. Therefore, for small r, F (r) < 0. But this is a contradiction, as β̂0 is asymptotically efficient.
Therefore, C = 0.

Corollary: V (q̂) = V (β̂1)− V (β̂0)

Proof: Since q̂ + β̂0 = β̂1:

V (q̂) + V (β̂0) = V (β̂1)

V (q̂) = V (β̂1)− V (β̂0)

Back to the Problem

Now we can set-up the t-test:

t =
β̂2SLS − β̂OLS

1√
n

√
σ2
2SLS − σ2

OLS

4.9.2 Stock-Yogo Procedure

The Stock-Yogo Procedure tells us to first find the F-statistic for the instruments in the first-stage
projection. If the F-statistic is higher than the critical value we are looking for, we conclude that the
rank condition is satisfied. We then move on and find the t-statistic for the coefficient of interest in
the second-stage.



Chapter 5

Generalized Method of Moments

5.1 Generalized Method of Moments Theory

The Generalized Method of Moments (GMM) comes from the method of moments that we covered in
the first semester. Recall that in the method of moments, we want to set some function, gn(θ), equal
to zero and then solve for θ. As an example, let’s take the IV estimator:

E[z′iui] = E[z′i(yi − xiβ)]

0 = E[z′iyi − z′ixiβ]

E[z′ixi]β = E[ziyi] (∗)

β = E[z′ixi]
−1E[ziyi]

To estimate, we apply the analogy principle. But note that this only works if the number of unknowns
equals the number of equations we have. What happens if we are over-identified (we have more
equations than unknowns, so L > K)? We cannot exactly identify β. To see this, label equation (∗)
with the dimensions of the matrices:

E[z′ixi]L×K βK×1 = E[ziyi]L×1

Now, we cannot invert E[z′ixi] as it is no longer a square matrix. How do we estimate β in this case?
We can minimize the sum of squared residuals:

β̂ = argmin
β

[z′(y − xβ)]′ [z′(y − xβ)]

This estimator will be consistent given our standard assumptions, but we are not guaranteed that this
will be a particularly precise estimator. The key insight of GMM: weight observations by the inverse
of their variance:

43
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β̂ = argmin
β

[z′(y − xβ)]′ Ω−1[z′(y − xβ)]

5.1.1 Criterion Function

Of course, we are not always estimating an IV model with overidentification. If we generalize the
estimator, we get the GMM criterion function:

Jn(β) = n · ḡn(β)′Wḡn(β)

where W ≡ a positive definite, symmetric weighting matrix and ḡn(β) ≡ estimator for the moment
condition. Minimizing this function with respect to β gives us our GMM estimator, β̂GMM .

5.1.2 Example

Let’s look at an IV model. First, we define our moment condition:

gn(β) =
1

n

n∑
i=1

z′iui

=
1

n

n∑
i=1

z′i(yi − xiβ)

Now we put this in the criterion function:

Jn(β) = n · 1

n2
·

(
n∑

i=1

z′i(yi − xiβ)

)′

W

(
n∑

i=1

z′i(yi − xiβ)

)

=
1

n
·

(
n∑

i=1

z′i(yi − xiβ)

)′

W

(
n∑

i=1

z′i(yi − xiβ)

)

and take the first-order conditions with respect to the β vector:

∂J

∂β
= 0

2

n
(−z′x)′W (z′(y − xβ)) = 0

2

n
(x′zW (z′(xβ − y)) = 0

x′zWz′xβ = x′zWz′y

β̂ = (x′zWz′x)−1(x′zWz′y)
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If we choose W = (z′z)−1, then:

β̂ = (x′z(z′z)−1z′x)−1(x′z(z′z)−1z′y)

= (x′Pzx)
−1(x′Pzy)

= β̂2SLS

And if we are exactly identified (K = L):

β̂ = (x′zWz′x)−1(x′zWz′y)

= (z′x)−1W−1(x′z)−1x′zWz′y

= (z′x)−1(z′y)

= β̂IV

5.1.3 Consistency

To prove consistency of the GMM estimator (specifically for the IV case), we first define two structures:

QL×R ≡ E
[
∂gi
∂β

]′
= E[x′z]′

= E[z′x]

ΩL×L ≡ E[gi(β)gi(β)′]

= E[z′uu′z]

We start from the identified β̂:

β̂ = (x′zWz′x)−1(x′zWz′y)

P−→ (Q′WQ)−1(Q′WE[z′y])

= (Q′WQ)−1(Q′WE[z′(xβ + u)])

= β + (Q′WQ)−1(Q′WE[z′u])

= β

So the GMM estimator is consistent (similar proofs can be done for the other regression types).
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5.1.4 Asymptotic Normality

β̂GMM − β = (x′zWz′x)−1(x′zWz′u)
√
n(β̂GMM − β) = (x′zWz′x)−1(x′zW

√
nz′u)

d−→ (Q′WQ)−1Q′W N (0,E[z′uu′z])

= N
(
0, (Q′WQ)−1Q′WΩWQ(Q′WQ)−1

)
Looking at this asymptotic variance, we can see that we want to choose W = Ω−1. Doing this will
cause the asymptotic variance to shrink:

√
n(β̂GMM − β)

d−→ N
(
0, (Q′Ω−1Q)−1Q′Ω−1ΩΩ−1Q(Q′Ω−1Q)−1

)
= N

(
0, (Q′Ω−1Q)−1Q′Ω−1Q(Q′Ω−1Q)−1

)
= N

(
0, (Q′Ω−1Q)−1

)
We can prove that this asymptotic variance is better than any other choice for W . This amounts to
proving that AV AR |W −AV AR |Ω−1 is PSD. To begin with, we use the property that A−B is PSD
iff B−1 −A−1 is PSD:

(AV AR |Ω−1)
−1 − (AV AR |W )

−1
= (Q′Ω−1Q)− (Q′WQ)(Q′WΩWQ)−1(Q′WQ)

= Q′ [Ω−1 −WQ(Q′WΩWQ)−1Q′W
]
Q

= Q′Ψ
[
I −Ψ−1WQ(Q′WΨ−1Ψ−1WQ)−1Q′WΨ−1

]
ΨQ

= Q′Ψ
[
I −D(D′D)−1D′]ΨQ

= Q′Ψ[MD]ΨQ

This is PSD, so setting W = Ω−1 is the ideal weighting matrix. Fortunately, this is always the best
weighting matrix. Also fortunately for us, Ω̂ = 1

n

∑n
i=1 ḡi(β)ḡi(β)

′ P−→ Ω.

In practice, when dealing with highly non-linear equations, we set W = I and iterate GMM letting
the algorithm eventually converge to the ideal W .

5.1.5 GMM for Time Series (from Hayashi Chapter 6)

Sometimes we do not have cross-sectional data. Instead, we could have longitudinal data. We need
to prove asymptotic properties for GMM in this situation. To do so, we need a different central limit
theorem.
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Gordin’s CLT for zero-mean ergodic stationary processes:

Suppose {yt} is stationary and ergodic5 and suppose Gordin’s condition is satisfied. Then E[yt] = 0,
the autocovariances {γt} are absolutely summable, and

√
nȳ

d−→ N

0,

∞∑
j=−∞

γj


A process meets Gordin’s condition iff it satisfies three requirements:

(a) E[y2t ] < ∞. This condition simply says that the variance of the series exists.

(b) E[yt | yt−j , yt−j−1, ...]
m.s.−→
j→∞

0. This condition says that the conditional mean of the

process is zero. It also implies that the unconditional mean is zero.

Before we go to the third requirement, we need to rewrite yt:

yt = yt − (E[yt | It−1]− E[yt | It−1])− (E[yt | It−2]− E[yt | It−2])

− ...− (E[yt | It−j ]− E[yt | It−j ])

= (yt − E[yt | It−1]) + (E[yt | It−1]− E[yt | It−2])

+ ...+ (E[yt | It−j+1]− E[yt | It−j ]) + E[yt | It−j ]

= (rt,0 + rt,1 + ...+ rt,j−1) + E[yt | yt−j , yt−j−1...]

where rtk = E[yt | It−k]− E[yt | It−k−1]. Using assumption (b):

yt = (rt,0 + rt,1 + ...+ rt,j−1)

=

∞∑
j=0

rtj

So yt is a telescoping sum.

(c)
∑∞

j=0(E[r2tj ]1/2) < ∞. This conditions says that shocks that occurred long ago should
not influence the current value of y too much.

We can easily extend this to the multivariate case:

√
T (ȳ)

d−→ N

0,

∞∑
j=−∞

Γj


where Γj = E[yty

′
t−j ]

5Ergodicity intuitively requires that two random variables sufficiently far apart in the sequence must be nearly
independent.
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Applied to GMM

Define gt as the moment condition. Assuming our time series is ergodic and stationary, we can apply
Gordon’s CLT:

√
T ḡ

d−→ N

0,

∞∑
j=−∞

Γj


= N

0,Γ0 +

∞∑
j=1

(Γj + Γ′
j)


To estimate the asymptotic variance, we replace Γj with Γ̂j =

1
T

∑T
t=j+1 ĝtĝ

′
t−j :

ÂV AR
g
= Γ̂0 +

∞∑
j=1

(Γ̂j + Γ̂
′
j)

But note that we cannot estimate for infinity periods and we do not want to weight all covariances the
same (the further away the autocovariance is, the less we want it to impact our estimate). Therefore,
we choose a number of periods to estimate (say 12 periods) and introduce a kernel to weight the
autocovariances:

Kj = 1− j

L+ 1

where j ≡ current lag and L ≡ maximum lag we include. Putting this into ÂV AR gives us the
Newey-West estimator:

ÂV AR
g

NW = Γ̂0 +
1

T

L∑
j=1

T∑
t=j+1

Kj

(
ĝtĝ

′
t−j + ĝt−j ĝ

′
t

)
Now recall the Criterion Function:

J = T ḡ′Wḡ

We can use the Delta Method to find the asymptotic variance of the parameters estimated through
GMM (equivalent to the normal way we find the asymptotic variance). The asymptotic distribution
is thus:

√
T (β̂ − β)

d−→ N

(
0,

(
∂g

∂β

)′

W

(
∂g

∂β

))

We know that the optimal weighting matrix is the inverse of the variance from the CLT. In this case,
that is our Newey-West estimator.

ÂV AR =

(
∂ĝ

∂β̂

)′(
ÂV AR

ĝ

NW

)−1(
∂ĝ

∂β̂

)
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Note that the β̂ estimator remains the same as before (using IV as an example again):

β̂ = (x′zŴz′x)−1(x′zŴz′y)

where we plug the inverse of the Newey-West estimator in for Ŵ .

5.2 Matlab Help

In class, we went over an example using IV. In Matlab, we found β̂GMM using a one-shot method, a
two-step method, and an iterated method. We also talked about how to implement the Newey-West
estimator using function handles. Below is a screenshot of the Newey-West code.

Figure 5.1
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Chapter 6

Binary Response Models

6.1 Binary Response Theory (Wooldridge Chapter 15)

We have primarily focused on cases where the left-hand side of our regressions, usually denoted as yi,
is a continuous random variable. Now, we will develop theoretical models for the case of a discrete yi,
particularly when yi is binary (takes on the value of either 0 or 1). We will still have right-hand side
explanatory variables, x = [x1, x2, ..., xK ].

With binary response models, we usually want to predict the probability of yi = 1, also called the
response probability:

p(x) = P (y = 1|x)

for the various values of x. In general, if xj is continuous, the partial effect of xj on the probability
that yi = 1 is:

∂P (y = 1|x)
∂xj

=
∂p(x)

∂xj

Note that if we have two variables on the right-hand side that take the form of x1 = z and x2 = z2,
and we want the impact of z on P (y = 1|x), then we need to take the derivative with respect to both
x1 and x2. For a binary xK , the partial effect is:

p(x1, x2, ..., xK−1, 1)− p(x1, x2, ..., xK−1, 0)

51
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Before we go further in studying binary response models, four properties of Bernoulli random variables:

(1) P (y = 1|x) = p(x)

(2) P (y = 0|x) = 1− p(x)

(3) E[y|x] = p(x)

(4) V ar(y|x) = p(x)(1− p(x))

6.1.1 Linear Probability Model

A linear probability model uses the same structure that we have been using up to this point. Namely,
it takes the form of a standard regression equation:

P (y = 1|x) = β0 + β1x1 + β2x2 + ...+ βKxK

This form is convenient, as the partial effect of x1, assuming it is not functionally related to any of the
other explanatory variables, is β1.

We must note that the linear probability model can return estimates outside of the unit interval.
Since it is linear, the regression line will carry past y = 0 and past y = 1. This model should therefore
be thought of as an approximation for the response probability.

To determine whether the linear probability model is the right estimation tool, we need to look at
the conditional mean and variance of y. Because y is Bernoulli:

E[y|x] = β0 + β1x1 + ...+ βKxK

V ar(y|x) = xβ(1− xβ)

Because the conditional expectation is linear, we know that the OLS regression of y on [1,x] gives a
consistent estimator for β. But, because the variance term includes x, we know that the variance is
heteroskedastic. Therefore, we know that we need to use heteroskedasticity-robust standard errors.
But because we know the analytic formula for the variance, we can use Weighted Least Squares:

(1) Run standard OLS for yi = xiβ + εi

(2) Find the fitted left-hand side variables ŷi (ensure that all 0 < ŷi < 1 for all i ∈ I)

(3) Derive σ̂i = [ŷi(1− ŷi)]
1/2

(4) Find β∗ from yi

σ̂i
= xi

σ̂i
β + ui using OLS

(5) Test β∗ with the normal OLS standard errors in step (4)

So when is the linear probability model good? The basic answer is “when the conditional expectation
is linear,” which reliably occurs when:

(1) x contains dummy variables for mutually exclusive and exhaustive categories (the model
is saturated) –or–
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(2) We have a latent variable model where E[y|x] = xβ. To see why this is the case, start
from the latent variable model:

y∗i = xiβ + ui where yi = 1(y∗i > 0)

Then:

P (y = 1|x) = P (xβ + u > 0|x)

= P (u > −xβ|x)

= 1−G(−xβ) (∗)

= G(xβ) (∗∗)

where G(xβ) is the underlying distribution we assume for the error term. So E[y|x] =
G(xβ). For a linear probability model to be the correct specification, the conditional
expectation must be linear, and so we need some distribution that will return E[y|x] =
xβ.

Note: we must have a symmetric (around zero) distribution for G(xβ) to go from equa-
tion (∗) to equation (∗∗). One such example is the uniform distribution centered at zero.
If we don’t have a symmetric distribution centered at zero, then the linear probability
model will still work and the conditional expectation will still be linear. The proof is
just more involved.

But what happens if neither of these two scenarios occur (or we do not want to make stringent
assumptions or keep adding dummy variables)? Then we may want to consider probit and logit
models.

6.1.2 Probit and Logit

For the probit model, we set G(xβ) = Φ(xβ), where Φ stands for the cdf of a standard normal
distribution. For the logit model, we set G(xβ) = Λ(xβ), where Λ stands for the cdf of a standard
logistic distribution.

New distributions means that partial effects will have a different calculation. For continuous right-
hand side variables, the partial effect is:

∂p(x)

∂xj
= g(xβ)βj

where g(xβ) is the derivative of the cdf. If xK is binary, then the partial effect is:

G(β1 + β2x2 + ...+ βk−1xK−1 + βK)−G(β1 + β2x2 + ...+ βK−1xK−1)

And if xK is discrete, then:

G(β1 + β2x2 + ...+ βk−1xK−1 + βK(cK + 1))−G(β1 + β2x2 + ...+ βK−1xK−1 + βKcK)
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where cK is some value for variable xK .

6.1.3 Estimating Probit and Logit

We know the underlying distribution for y, so the best method we can use is maximum likelihood
estimation. We first define the conditional likelihood for i:

f(yi|xi, β) =

G(xiβ) yi = 1

1−G(xiβ) yi = 0

= G(xiβ)
yi (1−G(xiβ))

1−yi

Now we define the conditional log-likelihood function for one i:

ℓi(β) = ln (f(yi|xi, β))

= yiln (G(xiβ)) + (1− yi)ln (1−G(xiβ))

Next, aggregate this across all observations and take the average:

L(β) =
n∑

i=1

[yiln (G(xiβ)) + (1− yi)ln (1−G(xiβ))]

=

n∑
i=1

ℓi(β)

Qn(β) =
1

n

n∑
i=1

ℓi(β)

Our estimator β̂MLE = argmax
β

Qn(β) (it also maximizes L(β)). We assume that there exists a unique

β that maximizes Qn(β).

For consistency, we only need to assume that Qn(β)
P−→ Q(β). This assumption implies that

argmax
β

Qn(β)
P−→ argmax

β
Q(β).

For asymptotic normality, we Taylor approximate around the score function:

∂Qn(β)

∂β
= sn(β̂) = 0

1

n

n∑
i=1

∂ℓi(β)

∂β
= 0

sn(β) +
∂sn(β)

∂β
(β̂ − β) = 0 (Taylor approx.)

(β̂ − β) = −sn(β)

(
∂sn(β)

∂β

)−1

√
n(β̂ − β) = −

√
nsn(β)

(
∂sn(β)

∂β

)−1
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Now note that because β maxes Q(β) by definition:

∂Q(β)

∂β
=

∂

∂β
E[ℓi(β)]

= E
[
∂

∂β
ℓi(β)

]
= E [si(β)]

= 0

Then we can apply the multivariate central limit theorem to sn(β):

√
n(β̂ − β)

d−→ N (0,E[si(β)si(β)′]) ·
−∂

∂β
E[si(β)]−1

= N (0,E[si(β)si(β)′]) · −E[Hi(β)]
−1

= N
(
0,E[Hi(β)]

−1E[si(β)si(β)′] E[Hi(β)]
−1
)

where Hi(β) denotes the Hessian. Remember back to first semester. If the model is correctly specified,
then the expected Hessian is equal to the Fisher information matrix (score matrix “squared”). Imposing
this, we note that the maximum likelihood estimator reaches the Cramér-Rao lower bound:

√
n(β̂ − β)

d−→ N
(
0,E[Hi(β)]

−1
)

Note that in the real world, we do not know if we correctly specified the model, so we always use the
full asymptotic variance to estimate (the robust sandwich estimator).

We now turn to the analytical expressions for the score function and Hessian, and to the expression
for the sandwich estimator:

si(β) =
∂

∂β
[yiln (G(xiβ)) + (1− yi)ln (1−G(xiβ))]

=
gi(xiβ)[yi −G(xiβ)]x

′
i

G(xiβ)(1−G(xiβ))

Hi(β) =
∂si(β)

∂β

=
−gi(xiβ)

2x′
ixi

G(xiβ)(1−G(xiβ))

ÂV AR =

(
− 1

n

n∑
i=1

Hi(β̂)

)−1 (
1

n

n∑
i=1

si(β̂)si(β̂)
′

) (
− 1

n

n∑
i=1

Hi(β̂)

)−1

6.2 Previous Quiz Question

This question tests your understanding of the probit model.
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6.2.1 Part a

Write down the key components of the standard probit model seen in class for binary yi, vector of
explanatory variables xi, and vector of parameters β. Your answer must cover: (i) model for latent y∗i ;
(ii) model for observed yi; (iii) likelihood function of a single observation; (iv) log-likelihood function
of entire sample; (v) definition of the maximum likelihood estimator.

Solution

We go down the list:

(i) y∗i = xiβ + ui where ui|xi ∼ N(0, 1).

(ii) yi = 1{y∗i ≥ 0}.

(iii) For a probit model, G(xiβ) = Φ(xiβ). So the likelihood of a single observation is:

f(yi|xi, β) = Φ(xiβ)
yi(1− Φ(xiβ))

1−yi .

(iv) We take the log of the likelihood function:

ℓi(β) = ln(f(yi|xi, β))

= yiln(Φ(xiβ)) + (1− yi)ln(1− Φ(xiβ))

Then aggregate it over the entire sample:

L(β) =
n∑

i=1

ℓi(β)

(v) The maximum likelihood estimator maximizes the aggregate log-likelihood:

β̂MLE = argmax
β

Ln(β)

6.2.2 Part b

Derive the score function for the individual observation, that is, si(β). Prove that E[si(β)] = 0 at the
true β.

Solution

We first take the derivative of the individual log-likelihood function:

si(β) =
∂ℓi(β)

∂β
=

yiϕix
′
i

Φi
+

(1− yi)(−ϕi)x
′
i

1− Φi

=
ϕi(yi − Φi)x

′
i

Φi(1− Φi)
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Now we take the expectation of si(β):

E[si(β)] = Ex [E[si(β)|xi]]

= Ex

[
ϕiE[yi − Φi|xi]x

′
i

Φi(1− Φi)

]
= Ex

[
ϕi (E[yi|xi]− E[Φi|xi])x

′
i

Φi(1− Φi)

]
= Ex

[
ϕi (Φi − Φi)x

′
i

Φi(1− Φi)

]
= 0

6.2.3 Part c

Consider an OLS regression of yi on xi. Give an example of a distribution for the error term of the
latent model that makes the OLS estimator here and the MLE both consistent for the same parameters.

Solution

We need a distribution that is symmetric around zero and that yields a linear conditional expectation
function. Consider a uniform distribution:

ui|xi ∼ U [−1/2, 1/2]

Fu(u) =
u+ 1/2

1/2 + 1/2

= u+
1

2

First, we check if this is symmetric around zero. That is, does Fu(−u) = 1− Fu(u)?

1− Fu(u) = 1− u− 1

2

= −u+
1

2

= Fu(−u)

Then we check to see if the conditional expectation is linear:

E[yi|xi] = P (yi = 1|xi)

= Fu(xiβ)

= xiβ +
1

2

This is linear, so OLS is consistent for the same parameter as MLE, excluding the constant term.
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6.2.4 Part d

Start again with the probit model. Suppose that xi is a vector of discrete random varaibles. Demon-
strate how to consistently estimate β using an OLS regression. Explain how to obtain robust standard
errors for your β̂.

Solution

First, we create a dummy variable for all possible combinations of our right-hand side variables. Take
a simple example where we have two right-hand side variables: [1, male]. Then we will have two
dummies: one for the combination (1,0) and one for the combination (1,1). In general, we will have
dummies Di1, ..., DiP in the model. Run OLS on the equation yi =

∑P
j=1 γjDij + εi. This is a fully

saturated linear probability model. Therefore, E[yi|xi] = Φ(xiβ) =
∑P

j=1 γjDij . Then:

xjβ = Φ−1(γj

x′
jxjβ = x′

jΦ
−1(γj)

P∑
j=1

x′
jxjβ =

P∑
j=1

x′
jΦ

−1(γj)

β̂ =

 P∑
j=1

x′
jxj

 P∑
j=1

x′
jΦ

−1(γj)


This is consistent as γ̂ is consistent for γ. Standard errors for β̂ can be constructed using the delta
method.



Chapter 7

Censoring and Selection

7.1 The First Problem: Data Censoring

Data censoring arises when observed data is partially continuous, but for some reason also consists of
a mass of observations at a point. Two of the commons reasons are:

1. Top-Coding: Observations above an often arbitrary maximum value are recorded as that max-
imum value.

– As an example, think of income. The Current Population Survey (CPS) sets a maximum
limit (currently $200,000). Any observation of income above $200,000 will be recorded as
$200,000.

2. Corner-Solutions: Observations bunch at the end-points of the support.

– Here, think of donations to religious charities. A large number of observations will not
donate to religious charities, so a mass of observations will be at $0.

So what exactly is the problem? Recall the issue with the linear probability model. To properly apply
OLS, we need the underlying conditional expectation function to be linear. With data-censoring, the
main issue is that the observed data is not generated from a linear process. How do we deal with this
problem?

7.2 Tobit Models

We begin as we did with the probit and logit models - a latent variable set-up. For the mid-censored
case (i.e. where the data process has a lower bound and an upper bound), our observed outcome
variable is generated as follows:

yi =


yU y∗i ≥ yU

y∗i yL < y∗i < yU

yL y∗i ≤ yL

59
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where we observe yi but not y∗i . Our goal, though, is to estimate the latent variable model y∗i = xβ+u,
with u |x,yL,yU

∼ N(0, σ2) assumed. We can use maximum likelihood estimation (because we assume
the underlying true distribution). But due to censoring, we need to think hard about how we construct
the likelihood function. Consider the following figure:

Figure 7.1: This standard normal distribution has been censored, with all values less than one being
assigned the value one and all values greater than five being assigned the value five.

Let’s first think about the case of left-censoring (when yi = yL). Then we want to look at:

P (yi ≤ yL | xi, yL, yU ) = P (y∗i ≤ yL | xi, yL, yU )

= P (xiβ + ui ≤ yL | xi, yL, yU )

= P

(
ui

σ
≤ yL − xiβ

σ

∣∣∣∣xi, yL, yU

)
= Φ

(
yL − xiβ

σ

)
Then we look at the case of right-censoring (when yi = yU ):

P (yi ≥ yU | xi, yL, yU ) = 1− Φ

(
yU − xiβ

σ

)
Then we look at the middle portion where there is no censoring:

P (yL < yi < yU | xi, yL, yU ) = Φ

(
yi − xiβ

σ

)
p(yi | xi, yL, yU ) = ϕ

(
yi − xiβ

σ

)
· 1
σ
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Constructing a likelihood function for an individual observation consists of combining all three cases
using indicator functions:

f(yi | xi, yL, yU , β, σ
2) =

[
Φ

(
yL − xiβ

σ

)]1{yi=yL}

×
[
ϕ

(
yi − xiβ

σ

)
· 1
σ

]1{yi∈(yL,yU )}

×
[
1− Φ

(
yU − xiβ

σ

)]1{yi=yU}

From here, we know what to do: take the log, sum up over all the observations, find the score vector,
and lastly solve for β̂MLE . To find the partial effect, we need to do a little bit more work. We need to
find the conditional expectation function:

E[y | x] = yL · P (yi = yL | x) + E[y | x, yi ∈ {yL, yU}] · P (yL < yi < yU | x)

+ yU · P (yi = yU | x)

then take the partial of the conditional expectation with respect to xj . To see how this works, let’s
simplify the problem by looking at a special case called the “standard Tobit.” The selection equation
looks as follows:

yi =

y∗ y∗ ≥ 0

0 y∗ ≤ 0

= max{0, y∗}

This selection equation returns the following graph:

Figure 7.2: The standard Tobit sample.
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Note that there is no top-censoring here. In addition, because the bottom-censored value is zero, the
conditional expectation function boils down to one term:

E[y | x] = E[y | x, yi > 0] · P (yi > 0 | x)

Let’s first look at the probability that yi is greater than zero:

P (yi > 0 | x) = P (xiβ + ui > 0 | x)

= P

(
ui

σ
> −xiβ

σ

∣∣∣∣x)
= 1− Φ

(
−xiβ

σ

)
= Φ

(
xiβ

σ

)
where the last step comes from the symmetry of the normal distribution assumed on the error term.
Next we find E[y | x, y > 0]. To do so, first let z be distributed standard normal. Then note that
E[z | z > c] = ϕ(c)

1−Φ(c) . Keeping this result in mind, we proceed:

E[y | x, y > 0] = E[xiβ + ui | x, xiβ + ui > 0]

= xiβ + σE
[ui

σ

∣∣∣x, ui

σ
> −xiβ

σ

]

= xiβ + σ
ϕ
(
−xiβ

σ

)
1− Φ

(
−xiβ

σ

)
= xiβ + σ

ϕ
(

xiβ
σ

)
Φ
(

xiβ
σ

)
= xiβ + σλ

(
xiβ

σ

)

where λ
(

xiβ
σ

)
denotes the inverse Mills ratio. Now we know that the conditional expectation function

is:

E[y | x] =
[
xiβ + σλ

(
xiβ

σ

)]
Φ

(
xiβ

σ

)
Let’s take the partial derivative with respect to xj , the jth right-hand side variable:

∂E[y | x]
∂xj

=
∂

∂xj
(P (y > 0 | x)E[y | x, yi > 0])

=
∂P (yi > 0 | x)

∂xj
· E[yi | x, yi > 0] + P (yi > 0 | x) · ∂E[yi | x, yi > 0]

∂xj
(∗)
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Before continuing, we will accept ex ante that the derivative of the inverse Mills ratio with respect to
xj is:

∂λ
(

xiβ
σ

)
∂xj

= −λ

(
xiβ

σ

)(
xiβ

σ
+ λ

(
xiβ

σ

))
Therefore, the partial effect of xj on E[yi | x, yi > 0] is:

∂E[yi | x, yi > 0]

∂xj
= βj

[
1− λ

(
xiβ

σ

)(
xiβ

σ
+ λ

(
xiβ

σ

))]
Plugging this into equation (∗) yields:

∂E[y | x]
∂xj

= ϕ

(
xiβ

σ

)
βj

σ

(
xiβ + σλ

(
xiβ

σ

))
+Φ

(
xiβ

σ

)
βj

[
1− λ

(
xiβ

σ

)(
xiβ

σ
+ λ

(
xiβ

σ

))]
which simplifies to:

∂E[y | x]
∂xj

= Φ

(
xiβ

σ

)
βj

This is the partial effect of xj on the conditional expectation in a standard Tobit set-up.

7.3 The Second Problem: Sample Selection

Sometimes sample selection is not random or we are missing observations. Two common reasons for
problematic sample selection are:

1. Truncation: We throw out observations outside of a certain range. Then the likelihood of
observing an individual observation is:

f(yi | xi) =


f(yi|xi)

F (b|xi)−F (a|xi)
if yi ∈ [a, b]

0 if yi > b or yi < a

– This case is essentially a truncated Tobit. We set the probabilities of observing a value less
than a or a value greater than b to zero and continue with the Tobit.

2. Incidental Truncation: We are missing observations due to the nature of data gathering.

– Think of trying to estimate the labor supply for women, where the outcome variable is the
potential wage rate. The problem here is that we don’t observe the wages of women that
do not work.

How do we deal with incidental truncation? We use a Heckit model.
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7.4 Heckit Models

We first define an equation of interest:

yi1 = xi1β + ui1

and then a selection equation:

yi2 = 1{xi2δ + ui2 > 0}

When this selection equation is true, meaning that yi2 = 1, we observe outcome variable yi1. To
proceed, we make three assumptions:

1. u is independent of xi and has a mean of zero.

2. u2 ∼ N(0, 1).

3. E[u1 | u2] = γ1u2.

The end goal here is to learn about β using what we observe. We cannot directly find E[y1 | x, y2 = 0],
so we start off by finding E[y1 | x, u2]:

E[y1 | x, u2] = E[x1β + u1 | x, u2]

= x1β + E[u1 | u2]

= x1β + γ1u2

Now we return to E[y1 | x, y2 = 0]:

E[y1 | x, y2 = 0] = E[y1 | x, x2δ + u2 > 0]

= E[y1 | x, u2 > −x2δ]

= E [E[y1 | x, u2]|x, u2 > −x2δ]

= x1β + γ1E[u2 | x, u2 > −x2δ]

= x1β + γ1λ(x2δ)

Note that because γ1 is probably not zero, OLS will be inconsistent for the partial effect.6 How do we
estimate this conditional expectation then? We use Heckman’s two-step procedure (the Heckit). The
procedure is as follows:

1. Notice we have assumed u2 ∼ N(0, 1) and that yi2 is a binary response variable. Then we can
use a probit model of yi2 on xi2 to find δ̂2. From δ̂2 we can compute the estimated inverse Mills
ratio, λ̂i2.

2. Now we can run OLS of yi1 on xi1 and λ̂i2. This regression will give us β̂ and γ̂1, both of which
are consistent estimates.

6If γ1 is zero, then OLS will be consistent and the robust standard errors from that OLS regression will be correct.
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– Note that the standard errors are incorrect because we are using a generated regressor (λ̂i2).

– To properly estimate the standard errors, we need to use the Delta Method.
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Chapter 8

Panel Data

8.1 Panel Data Model

Panel data combines two different types of data: longitudinal (or time series) and cross-section. Lon-
gitudinal data follows one individual over multiple periods of time, while cross-sectional data follows
many individuals across one period of time. So far, we have only dealt with cross-sectional data.

To construct a good set of panel data, we want to randomly sample n individuals, with each
individual denoted with i, and track those individuals over time for T periods, with each time period
denoted with t. We assume that xit is independent across i, but dependent across t for each i.

Clearly, if there is a component of each observation that is constant across time that we do not
account for, the estimates on our coefficients for xit will be inconsistent (as our standard OLS assump-
tion that E[xitεit] = 0 will likely not hold). In cross-sectional data, we solved this problem by using
an instrument and estimating via 2SLS. What do we do here? Consider the following model, starting
from our standard regression model:

yit = xitβ + εit

= xitβ + ci + uit

where ci is a variable that is specific to each individual and constant over time. Some examples of this ci
could include innate ability, sex, race, etc. In panel data, we want to control for these variables. Before
continuing, do note that we are assuming that the error term can be linearly broken up into a time-
dependent term and a time-independent term. We also assume that E[xisuit] = 0 for s, t ∈ {1, ..., T}.
In words, this says that our right-hand side regressors are orthogonal to the time-dependent error term
across all time periods. Otherwise, we would need an instrument.

8.2 Estimation Method I: Pooled OLS

Pooled OLS is the simplest method conceptually. Basically, we just run OLS after stacking the ob-
servations across time (chronologically) into one matrix. Effectively, we are estimating the following
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model:

yi = xiβ + εi

Therefore, The estimator is as follows:

β̂POLS =

(
n∑

i=1

T∑
t=1

x′
itxit

)−1( n∑
i=1

T∑
t=1

x′
ityit

)

For this estimator to be consistent we must assume that E[x′
itεit] = 0, as we are not controlling for

the time-independent portion of the error.

Use robust standard errors when finding the asymptotic variance, as observations will be correlated
across time (due to ci in the error term).

8.3 Estimation Method II: Random Effects

To apply random effects, we need a number of other assumptions:

(1) Strict Exogeneity: E[uit | xi, ci] = 0

(2) Random Effects: E[ci | xi] = E[ci] = 0

(3) Rank Condition: Rank
(
E[x′

iΩ
−1xi]

)
= k, where Ω = E[εiε′i] and k is the number of right-

hand side variables

(4) Conditional Homoskedasticity: E[uiu
′
i | xi, ci] = σ2

uIT

(5) No Serial Correlation: E[c2i | xi] = σ2
c

Ω is used to improve the efficiency of the estimator, and assumptions (4) and (5) make estimation of
Ω relatively simple. How do we estimate Ω? First start by finding Ω:

Ω =


E[ε2i1] E[εi1εi2] ... E[εi1εiT ]

E[εi2εi1] E[ε2i2] ... E[εi2εiT ]
...

...
. . .

...
E[εiT εi1] ... ... E[ε2iT ]


Note that by using assumptions (4) and (5):

E[ε2it] = E
[
(ci + uit)

2
]

= E[c2i ] + 2E[ciuit] + E[u2
it]

= σ2
c + σ2

u
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and

E[εitεis] = E[(ci + uit)(ci + uis)]

= E[c2i ] + E[]ciuis] + E[ciuit] + E[uituis]

= σ2
c

So Ω becomes:

Ω =


σ2
c + σ2

u σ2
c ... σ2

c

σ2
c σ2

c + σ2
u ... σ2

c

...
...

. . .
...

σ2
c ... ... σ2

c + σ2
u


To estimate Ω, we need to estimate σ2

c and σ2
u. To do so, we run the following algorithm:

(1) Run POLS to find ε̂it

(2) Estimate σ̂2
ε = 1

nT−k

∑n
i=1

∑T
t=1 ε̂

2
it

(3) Estimate σ̂2
c = 1

nT (T+1)/2−k

∑T−1
t=1

∑T
s=t+1

∑n
i=1 ε̂itε̂is

(4) Back out σ̂2
u = σ̂2

ε − σ̂2
c

We can now construct Ω̂. Finally, we estimate the random effects estimator:

β̂RE =

(
n∑

i=1

x′
iΩ̂

−1xi

)−1( n∑
i=1

x′
iΩ̂

−1yi

)

which, using what we learned from GLS, is consistent. Flip back to the GLS notes to find the asymptotic
variance.

8.4 Estimation Method III: Fixed Effects

For fixed effects models, we do not assume that ci is uncorrelated with xit. Rather, we control for ci

by demeaning the data across time:

yit − ȳi = (xit − x̄i)β + ci − ci + uit − ūi

ÿit = ẍitβ + üit

We can then stack these across time:

ÿi = ẍiβ + üi

Notice that this looks very similar to the POLS set-up. Can we apply the POLS estimator? We need
two assumptions for consistency and another for unbiased-ness:
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(1) Orthogonality (for consistency): E[ẍ′
iüi] = 0

(2) Rank (for consistency): Rank (E[ẍ′
iẍi]) = k

(3) Strict Exogeneity (for unbiased): E[üi | ẍi] = 0

Then the fixed effects estimator is:

β̂FE =

(
n∑

i=1

ẍ′
iẍi

)−1( n∑
i=1

ẍ′
iÿi

)

To find asymptotic variance, we need to slightly rewrite the model. Define QT ≡ IT − PT , where
PT ≡ ξT (ξ

′
T ξT )

−1ξ′T and ξT ≡ [1, ..., 1]1×T . In effect, when multiplied by a matrix of data, PT finds
the mean. Thus, QT demeans the data. Also note that QT is an annihilator matrix, meaning that it
is idempotent. Turning now to the proof for asymptotic normality:

β̂FE =

(
1

n

n∑
i=1

x′
iQ

′
TQTxi

)−1(
1

n

n∑
i=1

x′
iQ

′
TQT yi

)

= β +

(
1

n

n∑
i=1

x′
iQTxi

)−1(
1

n

n∑
i=1

x′
iQTui

)
√
n(β̂FE − β)

d−→ E[x′
iQTxi]

−1 N (0,E[x′
iQTuiu

′
iQ

′
Txi])

= N
(
0,E[ẍ′

iẍi]
−1E[ẍ′

iuiu
′
iẍ

′
i] E[ẍ′

iẍi]
−1
)

If we assume conditional homoskedasticity (that E[uiu
′
i | xi, ci] = σ2

uIT ), then the asymptotic variance
becomes E[x′

iQTxi]
−1.

8.4.1 Dummy Variables in Place of Fixed Effects

If you’re experience in undergrad was like mine, you were told that fixed effects were simply dummy
variables in an OLS regression. Fortunately for us, we can run OLS on the following specification:

yit = xitβ +

1∑
q=0

cq1{q = 1}+ uit

and β̂OLS will be equal to β̂FE . In a linear model, when estimating β and c together, β̂ is consistent
(c is only unbiased, not consistent).

8.5 Estimation Method IV: First-Differences

Here, the idea is to lag the model once and then subtract it from the original model:

yit = xitβ + ci + uit

−(yit−1 = xit−1β + ci + uit−1)

∆yit = ∆xitβ +∆uit
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We then run POLS on this differenced model, stacked across time. So the first-differences estimator
is:

β̂FD =

(
1

n

n∑
i=1

∆x′
i∆xi

)−1(
1

n

n∑
i=1

∆x′
i∆yi

)

The asymptotics are derived in the same way as from OLS. For the asymptotic variance, we get:

AV ARFD = E[∆x′
i∆xi]

−1E[∆x′
i∆ui∆u′

i∆xi] E[∆x′
i∆xi]

−1

Under a random walk, first-differences is BLUE.

8.6 Comparing Methods

This is a lot of material very quickly. So to boil it down, how do we decide which method we should
use? Follow the tree diagram below:

8.7 Previous Quiz Question

This question centers on the Heckit procedure.
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8.7.1 Part a

Write down the key components of the sample selection model seen in class. there is an outcome
variable y1i, a selection dummy variable y2i, and a vector of explanatory variables xi that enters both
equations. Your answer must cover: (i) outcome and selection equations, (ii) explain what is and what
is not observed, (iii) assumption on the error terms, (iv) conditional mean of outcome equation in
selected sample, (v) Heckit two-step procedure.

Solution

(i) Outcome: y1i = xiβ + ui

Selection: y2i = 1{xiδ + νi ≥ 0}

(ii) Observed: y2i, xi, y1i if y2i = 1

Unobserved: ui, νi, y1i if y2i = 0

(iii) (ui, vi) is independent of xi and has zero mean, E[ui | νi] = γνi, and vi ∼ N(0, 1)

(iv) E[y1i | xi, y2i = 1] = xiβ + γλ(xiδ), where λ(·) denotes the inverse Mills ratio

(v) First, we estimated δ in the selection equation using a probit model. Then we calculate λ̂i =

λ(xiδ̂) for every i. Second, we estimate β via OLS by regressing y1i on xi and λ̂.

8.7.2 Part b

Consider a selection model for labor supply of mothers. Below you have the OLS Stata output of the
second step of the Heckit procedure with robust standard errors. The outcome variable is log income
in 1979. We have 6 mother characteristics in the right-hand side plus “millsr” - the estimated inverse
Mills ratio. Test the null hypothesis that selection is exogenous. Are the standard errors correct in
this regression output?
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Solution

We are testing whether γ, the coefficient on the inverse Mills ratio, is zero. Under the null hypothesis,
the standard errors in this regression are accurate, so we use them to test the hypothesis in a t-test:

t =
16036.2− 0

2392.411

= 6.70

> 1.96

Therefore, we reject the null hypothesis that γ = 0. But if γ ̸= 0, then the standard errors of this
regression output are not correct. A significant generated regressor has been included in the model.

8.7.3 Part c

Go back to part (a). Suppose the vector of covariates is:

xi =
[
1 marriedi gradi marriedi × gradi

]
where married and grad are dummy variables indicating whether the individual is married or has a
graduate degree, respectively. A researcher uses the vector xi for both the outcome and selection
equations but is unable to compute the estimator in the second step. Explain why and propose a
solution.

Solution

There is perfect colinearity in the second-step regression equation. The vector xi take four different
values: 

1 1 1 1

1 1 0 0

1 0 1 0

1 0 0 0


Therefore, the inverse Mills ratio estimate, λ̂i can take four values: λ1, . . . , λ4. But then we can write
λ̂i as a linear combination of xi vectors:

λ1

λ2

λ3

λ4

 = λ4


1

1

1

1

+ (λ2 − λ4)


1

1

0

0

+ (λ3 − λ4)


1

0

1

0

+ (λ1 − λ2 − λ3 + λ4)


1

0

0

0


Therefore, λ̂ is perfectly colinear with xi and the second-stage regression cannot be run.

A solution to the problem is to exclude one dummy from either equation. Then, xi and λ̂i would
not be perfectly colinear.



74 CHAPTER 8. PANEL DATA

8.8 Violating Assumptions
We know what to do when strict exogeneity holds. But what happens when strict exogeneity fails and
only contemporaneous exogeneity holds? That is, suppose:

E[vit | xi, ci] ̸= 0 but E[x′
ituit] = 0

Which specification is more robust? Let’s compare fixed effects and first differences. To begin with,
look at the asymptotic normality proof for fixed effects:

β̂FE = β +

(
1

T

T∑
t=1

1

n

n∑
i=1

ẍ′
itẍit

)−1(
1

T

T∑
t=1

1

n

n∑
i=1

ẍ′
ituit

)

P−→
n→∞

β +

(
1

T

T∑
t=1

E[ẍ′
itẍit]

)−1(
1

T

T∑
t=1

E[ẍ′
ituit]

)
︸ ︷︷ ︸

(1)

Now, if we look at just term (1):

1

T

T∑
t=1

E[ẍ′
ituit] =

1

T

T∑
t=1

E[(xit − x̄i)
′uit]

=
1

T

T∑
t=1

E[x′
ituit]− E[x̄′

iuit]

= − 1

T

T∑
t=1

E[x̄′
iuit]

= −E[x̄′
iūi]

Invoke the Cauchy-Schwartz Inequality (that |E[xy]| ≤
(
E[x]2E[y]2

)1/2):
E[x̄iūi] ≤

E[x̄2
i ]E[ū2

i ]︸ ︷︷ ︸
(2)


1/2

Looking just at term (2):

E[ū2
i ] =

1

T
σ2
u

−→
T→∞

0

So all together:

|E[x̄′
iūi]| ≤

(
1

T
Aσ2

u

)1/2

−→
T→∞

0
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where A denotes a constant term. Note that as T gets larger, the inconsistency gets smaller. Now,
let’s look at first differences’ asymptotic proof:

β̂FD = β +

(
1

T − 1

T∑
t=2

1

n

n∑
i=1

∆x′
it∆xit

)−1(
1

T − 1

T∑
t=2

1

n

n∑
i=1

∆x′
it∆uit

)

P−→
n→∞

β +

(
1

T − 1

T∑
t=2

E[∆x′
it∆xit]

)−1(
1

T − 1

T∑
t=2

E[∆x′
it∆uit]

)

Assuming the data is stationary (but still weakly dependent) gives us:

β +

(
1

T − 1

T∑
t=2

E[∆x′
it∆xit]

)−1

︸ ︷︷ ︸
bounded

(
1

T − 1

T∑
t=2

E[∆x′
it∆uit]

)
︸ ︷︷ ︸

(3)

The first braced term is bounded (meaning it has a minimum value) due to the autocorrelation over
time. What about the (3)?(

1

T − 1

T∑
t=2

E[∆x′
it∆uit]

)
= E[x′

ituit − x′
ituit−1 − x′

it−1uit + x′
it−1uit−1]

= E[−x′
ituit−1 − x′

it−1uit] ̸= 0

So overall, as T → ∞, the first differences error does not disappear. The fixed effects method is more
robust to violations of the strict exogeneity assumption. This result gives us an opportunity to test
the strict exogeneity using the Hausman test:

H =
√
n(β̂FE − β̂FD)′(AV AR)−1

√
n(β̂FE − β̂FD)

d−→ χ2
k

where k is the number of coefficients on variables that vary across individuals, and AV AR is the
asymptotic variance of the difference between β̂FE and β̂FD.

8.9 Random Effects vs Fixed Effects

8.9.1 Relationship between RE and FE

To begin with, let’s calculate Ω for random effects:

Ω = σ2
uIT + σ2

cξT ξ
′
T

= σ2
uIT + σ2

cTξT (ξ′T ξT )
−1︸ ︷︷ ︸

1/T

ξT

= σ2
u + σ2

cTPT

=
σ2
uIT + Tσ2

cPT

σ2
u + Tσ2

c

· (σ2
u + Tσ2

c )
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=

 σ2
u

σ2
u + Tσ2

c︸ ︷︷ ︸
≡η

IT +

(
1− σ2

u

σ2
u + Tσ2

c

)
PT

 (σ2
u + Tσ2

c )

= [ηIT + (1− η)PT ](σ
2
u + Tσ2

c )

= (ηQT + PT )︸ ︷︷ ︸
≡ST

(σ2
u + Tσ2

c )

Manipulating ST :

S−1
T = PT +

1

η
QT

S
−1/2
T = PT +

1
√
η
QT

= PT +
1
√
η
(IT − PT )

= PT

(
1− 1

√
η

)
+

1
√
η
IT

= PT

(√
η − 1
√
η

)
+

1
√
η
IT

= PT

(
−λ

1− λ

)
+ IT

(
1

1− λ

)
where λ = 1−√

η. Raise both sides of the Ω expression to the -1/2:

Ω−1/2 = S
−1/2
T (σ2

u + Tσ2
c )

−1/2

=
(σ2

u + Tσ2
c )

−1/2

1− λ
[IT − λPT ]

=
(σ2

u + Tσ2
c )

1/2

(σ2
u + Tσ2

c )
1/2(σ2

u)
1/2

[IT − λPT ]

=
1

σu
[IT − λPT ]

Okay, now we are ready to transform the regression model as in GLS:

yi = xiβ + ui

Ω−1/2yi = Ω−1/2xiβ +Ω−1/2ui

(IT − λPT )yi = (IT − λPT )xiβ + (IT − λPT )ui

(yi − λȳi) = (xi − λx̄i)β + (ui − λūi)

Note that λ consists of population moments. We therefore estimate λ with λ̂ =
(
1− σ̂2

u

σ̂2
u+T σ̂2

c

)−1/2

.
But this means that random effects quasi-demeans the data, weighting by relative variance, whereas
fixed effects just demeans the data.
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8.9.2 Testing random effects

We can use the Hausman test to check whether random effects hold (that E[ci | xi] = 0). Because
under the null hypothesis random effects is BLUE, the Hausman principle applies (see recitation 6).
Therefore:

H =
√
n(β̂FE − β̂RE)′

[
ÂV AR

FE
− ÂV AR

RE
]−1 √

n(β̂FE − β̂RE)
d−→ χ2

k

Sometimes, though, we do not want to assume that we have conditional homoskedasticity (a key
assumption for GLS to be BLUE). Then we need a control function approach. The structural equation
is:

yit = xitβ + εit

Note that POLS is inconsistent:

β̂POLS − β =

(
1

nT

∑
it

x′
itxit

)−1(
1

nT

∑
it

x′
itεit

)

P−→ E

[
1

T

T∑
t=1

x′
itxit

]−1

E

[
1

T

T∑
t=1

x′
itεit

]

= E

[
1

T

T∑
t=1

x′
itxit

]−1

E

[
1

T

T∑
t=1

x′
it(ci + uit)

]

= E

[
1

T

T∑
t=1

x′
itxit

]−1

E

[
1

T

T∑
t=1

x′
itci

]

= E

[
1

T

T∑
t=1

x′
itxit

]−1

E [x̄′
ici]

̸= 0

So we take the best linear projection of ci on x̄i:

ci = x̄iφ+ ai

Now the control function becomes:

yit = xitβ + x̄iφ+ ai + uit

Because E[x̄′
iai] = 0 by construction, we can test whether φ = 0 by running POLS and using robust

standard errors. If ci is a vector, we need to run a joint Wald test on φ. If φ = 0, then ci is not
correlated with xit.
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8.10 Problem Set 5, Question 5 (Wooldridge 10.17)

Consider a standard unobserved effects model, but where we separate out aggregate time effects, say
dt, a 1×R vector, where R ≤ T − 1. Therefore, the model is:

yit = α+ dtη + witδ + ci + uit

where wit is the 1×M vector of explanatory variables that vary across i and t. Because dt does not
change across i, we take them to be nonrandom. We can also assume that E[ci] = 0, as the model

has an intercept term. Let λ = 1 −
(

1
1+T (σ2

c/σ
2
u)

)1/2
be the quasi time-demeaning parameter for the

random effects estimation. We assume that λ is known.

8.10.1 Part a

Show that we can write the equation for random effects as:

yit − λȳi = µ+ (dt − d̄)eta+ (wit − λw̄i)δ + (vit − λv̄i)

where µ = (1− λ)α+ (1− λ)d̄η and vit = ci + uit.

Solution:

We quasi-demean across all variables first:

yit − λȳi = (1− λ)α+ (dt − λd̄)η + (wit − λw̄i)δ + (vit − λv̄i)

= [(1− λ)α+ (1− λ)d̄η] + (dt − d̄)η + (wit − λw̄i)δ + (vit − λv̄i)

= µ+ (dt − d̄)η + (wit − λw̄i)δ + (vit − λv̄i)

which is what we wanted to show.

8.10.2 Part b

Now assume that µ = 0. Define git = [dt − d̄, wit − λw̄i] and β = [η′, δ′]′. Show that by assuming
E[uit | xi, ci] = 0, E[ci | xi] = E[ci] = 0, and rank (E[x′

iΩxi]) = k:

√
n(β̂RE − β) =

A−1
1√
n

n∑
i=1

T∑
t=1

g′it(vit − λv̄i) + op(1)

where A1 =
∑T

t=1 E[g′itgit]. Also verify that for any i:

T∑
t=1

(dt − d̄)(vit − λv̄i) =

T∑
t=1

(dt − d̄)uit
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Solution:

The random effects estimator is a POLS estimator with quasi-demeaning:

β̂RE =

(
n∑

i=1

g′igi

)−1( n∑
i=1

g′i(yi − λȳi)

)
√
n(β̂RE − β) =

(
1

n

n∑
i=1

g′igi

)−1(
1√
n

n∑
i=1

g′i(vi − λv̄i)

)

=
E[g′igi]−1

√
n

(
n∑

i=1

g′i(vi − λv̄i)

)
+ op(1)

Now to show the second part:

T∑
t=1

(dt − d̄)(vit − λv̄i) =

T∑
t=1

(dt − d̄)(1− λ)ci +

T∑
t=1

(dt − d̄)uit −
T∑

t=1

(dt − d̄)λūi

= (1− λ)ci

T∑
t=1

(dt − d̄) +

T∑
t=1

(dt − d̄)uit − (λūi)

T∑
t=1

(dt − d̄)

=

T∑
t=1

(dt − d̄)uit

8.10.3 Part c

Show that by assuming E[uit | hi, ci] = 0 and rank
(∑T

t=1 E[ḧ′
itḧit]

)
= k:

√
n(β̂FE − β) =

A−1
2√
n

n∑
i=1

T∑
t=1

h′
ituit + op(1)

where A2 =
∑T

t=1 E[h′
ithit] and hit = [dt − d̄, wit − w̄i].

Solution:

From both class and recitation, we know that:

√
n(β̂FE − β) =

(
1

n

n∑
i=1

h′
ihi

)−1(
1√
n

n∑
i=1

h′
iui

)

=
E[h′

ihi]
−1

√
n

(
n∑

i=1

h′
iui

)
+ op(1)

8.10.4 Part d

Show that A1
√
n(β̂RE − β)−A2

√
n(β̂FE − β) has an asymptotic variance matrix of rank M .
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Solution:

Using part b, we know that:

A1

√
n(β̂RE − β) =

1√
n

(
n∑

i=1

g′i(vi − λv̄i)

)
+ op(1)

and from part c, we know that:

A2

√
n(β̂FE − β) =

1√
n

(
n∑

i=1

h′
iui

)
+ op(1)

Note that the first R elements of both equations are the same: (dt − d̄)ui. Therefore:

A1

√
n(β̂RE − β)−A2

√
n(β̂FE − β)

=
1√
n

n∑
i=1

[
0

(wit − λw̄i)
′(vi − λv̄i)− (wi − w̄i)

′uit

]
+ op(1)

Therefore, the asymptotic variance of the difference can only have rank M , the size of wit.

8.10.5 Part e

What implications does part d have for a Hausman test that compares fixed effects and random effects
when the model contains aggregate time variables? Does it matter whether E[uiu

′
i | xi, ci] = σ2

uIT and
E[c2i | xi] = σ2

c?

Solution:

Part d implies that the Hausman test will have only M degrees of freedom, not M + R. Getting the
degrees of freedom correct is important, as it affects the limiting distribution and thus the critical
values. Assuming the two additional assumptions in the question will not change this fact.

Additionally, part d implies that if the model only includes time aggregates, the limiting distribu-
tions for random effects and fixed effects are the same. We would not have the rank M part of the
distribution. Therefore, the asymptotic difference is zero.



Chapter 9

Difference-in-Differences

9.1 Intuition

The idea behind difference-in-differences is to take subtract the average of the difference between the
treatment and control groups before the treatment time from the average of the difference after the
treatment time. This estimator, given a set of assumptions, will causally identify the impact of the
treatment.

We will look at a simple two time period, two group model for intuition. Graphically, an ideal
set-up to apply difference-in-differences would like like:

Here, we can see that our control group goes forward with the same trend as before the treatment.
Our treatment group, hereto after denoted by T = 1, is impacted only after the treatment at event
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time t = 0. We can also see that we assume that without treatment, the treated group’s trend
would have remained the same. This assumption is called the strong parallel trends assumption.
Mathematically:

E[yt=1(0)− yt=−1(0) | T = 1] = E[yt=1(0)− yt=−1(0) | T = 0]

where (·) denotes whether an individual actually received treatment, denoted by D.

This equation seems confusing, so let’s go through it little-by-little. The first term on the left-hand
side denotes our outcome, y, at time t = 1. So we are looking at the post-treatment. time-period.
It also has the subscript that D = 0. Therefore, this outcome is not treated. Note though that the
expectation is conditional on T = 1. Therefore, we are looking at the hypothetical outcome in the
post-treatment time period of the subjects in the treatment group had they not received treatment.
Graphically, the first term is the mean of the dashed line.

After having gone through the first term slowly, the remaining terms follow naturally. The second
term on the left looks at those in the treated group before the treatment time and without treatment.
The first term on the right looks at those in the control group after the treatment time, while the
second term on the right looks at those in the control group before the treatment time.

We can draw a picture visualizing the parallel trend assumption as written above:

The strong parallel trends assumption says that the two gaps highlighted in the picture are equal.
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9.2 Structural Equation

Now that we have an intuitive understanding of the model, let’s write down a structural equation:

yt(D) = β0 + β1 ∗ T + β2 ∗ Postt + β3 ∗D + β4 ∗ T ∗ Postt

+ β5 ∗ T ∗D + β6 ∗ Postt ∗D + β7 ∗ T ∗ Postt ∗D + ut

Let’s think carefully about this equation. β0 denotes the mean for those in the untreated group, before
treatment time. β1 denotes the mean for those in the treated group, before the treatment time. β3

denotes the mean for those actually treated before the treatment time. We then interact all of these
terms. Note that because we have a fully saturated model, E[ut | T ] = 0.

We can simplify this structural equation though by invoking the parallel trends assumption. Using
the left hand side of the assumption:

E[yt=1(0)− yt=−1(0) | T = 1] = (β0 + β1 + β2 + β4)− (β0 + β1)

= β2 + β4 (1)

Now the right hand side:

E[yt=1(0)− yt=−1(0) | T = 0] = (β0 + β2)− (β0)

= β2 (2)

Setting (1) and (2) equal to each other:

β2 + β4 = β2

β4 = 0

So by invoking the parallel trends assumption, we assume that β4 = 0. Our structural equation
becomes:

yt(D) = β0 + β1 ∗ T + β2 ∗ Postt + β3 ∗D

+ β5 ∗ T ∗D + β6 ∗ Postt ∗D + β7 ∗ T ∗ Postt ∗D + ut (3)

9.3 Estimation

We can’t estimate the altered structural model though. We can’t observe D. So, we impose that
Dit = Tit × Postt. Substituting this into equation (3):

yit = β0 + β1 ∗ Tit + β2 ∗ Postt + β3 ∗ Postt ∗ Tit + β5 ∗ Tit ∗ Tit ∗ Postt

+ β6 ∗ Postt ∗ Tit ∗ Postt + β7 ∗ Tit ∗ Postt ∗ Tit ∗ Postt + uit
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Note that a dummy variable squared maps to itself (e.g. Tit ∗ Tit = Tit). Therefore:

yit = β0 + β1 ∗ Tit + β2 ∗ Postt + (β3 + β5 + β6 + β7) ∗ Postt ∗ Tit + uit (4)

We now have a viable equation to estimate. What parameter do we want to find from this equation
though? Ideally, we would want to find the average treatment effect (ATE):

ATEt = E[yt(1)− yt(0)]

But we can’t find this, as we do not know the unconditional expectations.7 Instead, we can find what
is known as the average treatment on the treated (ATT):

ATTt = E[yt(1)− yt(0) | T = 1]

Evaluating the ATTt=1 using equation (3):

ATTt=1 = E[yt=1(1)− yt=1(0) | T = 1]

= [β0 + β1 + β2 + β3 + β5 + β6 + β7]− [β0 + β1 + β2]

= β3 + β5 + β6 + β7

Fortunately, this is the coefficient on Postt ∗ Tit in equation (4)! Rewriting (4) in a recognizable
regression format yields:

yi = xiδ + ui

[
yi,t=−1

yi,t=1

]
=

[
1 Ti,t=−1 Postt=−1 Postt=−1 ∗ Ti,t=−1

1 Ti,t=1 Postt=1 Postt=1 ∗ Ti,t=1

]
δ0

δ1

δ2

δ∗3

+

[
ui,t=−1

ui,t=1

]

This is a regression stacked across t. Therefore, we can use POLS with robust standard errors to
estimate the coefficient of interest. Note that GLS does not deliver efficiency gains because we have
no correlation of error terms across time.

9.4 Covariates

What happens if we add covariates to the equation (such that xi,t=1
d
= xi,t=−1)? The model becomes:

yt(D) = xβt(D,T ) + ut where E[ut | T, x] = 0

with x being a 1 × k vector of covariates and βt(D,T ) is a 7k × 1 vector of slope coefficients. Now
that we have covariates, we can use a weaker, less restrictive version of the parallel trends assumption.

7The idea here is that we cannot observe a random person receiving treatment. Those in the control group will never
receive treatment.
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Only after conditioning on x must the trends be parallel. This is called the conditional parallel
trends assumption. Mathematically:

E[yt=1(0)− yt=−1(0) | T = 1, x] = E[yt=1(0)− yt=−1(0) | T = 0, x] ∀x

This assumption allows us to set β4 to zero again:

E[yt=1(0)− yt=−1(0) | T = 1, X] = x[βt=1(0, 1)− βt=−1(0, 1)] Using PT|x:

x[βt=1(0, 1)− βt=−1(0, 1)] = x[βt=1(0, 0)− βt=−1(0, 0)]

x′x[βt=1(0, 1)− βt=−1(0, 1)] = x′x[βt=1(0, 0)− βt=−1(0, 0)]

βt=1(0, 1)− βt=−1(0, 1) = βt=1(0, 0)− βt=−1(0, 0)

β0 + β1 + β2 + β4 − β0 − β1 = β0 + β2 − β0

β2 + β4 = β2

β4 = 0

9.4.1 Identification

Once again, we cannot do average treatment effects or conditional average treatment effects. We turn
to conditional average treated on the treated:

CATTt(x) = E[yt=1(1)− yt=1(0) | T = 1, x]

Before continuing, note that the ATT is simply the expected value of the CATT :

ATTt = E[yt=1(1)− yt=1(0) | T = 1] Using LIE:

= Ex[CATTt=1(x)]

With that in mind, let’s derive which β’s the CATT corresponds to:

CATTt=1(x) = E[yt=1(1) | T = 1, x]− E[yt=1(0) | T = 1, x]︸ ︷︷ ︸
Can’t observe

= E[yt=1 | T = 1, x]− {E[yt=1(0)− yt=−1(0) | T = 1, x]

+ E[yt=−1(0) | T = 1, x]} Using PT|x:

= E[yt=1(1) | T = 1, x]− E[yt=1(0)− yt=−1(0) | T = 0, x]

− E[yt=−1(0) | T = 1, x]

= {E[yt=1(1) | T = 1, x]− E[yt=1(0) | T = 0, x]}

− {E[yt=−1(0) | T = 1, x]− E[yt=−1(0) | T = 0, x]}
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= x{β0 + β1 + β2 + β3 + β5 + β6 + β7 − β0 − β2} − x{β0 + β1 − β0}

= x [β3 + β5 + β6 + β7]︸ ︷︷ ︸
ATTt=1

Since we know x, we can find the ATT .

9.4.2 Estimation

Like in the previous case without covariates, we put our model into regression form:

yit = xitβt(Dit, Tit) + uit

= xit[β0 + β1 ∗ Tit + β2 ∗ Postt + (β3 + β5 + β6 + β7) ∗ Postt ∗ Tit] + uit

We assume that E[uit | Tit, xit] = 0 so that POLS is unbiased and consistent. In the case of a discrete
x, this assumption can actually be proven. Once again, use robust standard errors when doing POLS.
This time though, we can run pooled FGLS and get more precise estimates.

To estimate CATT and ATT , we calculate:

ĈATT t=1(x0) = x0

(
β̂3 + β̂5 + β̂6 + β̂7

)
ÂTT t=1 = ¯̃̄x

(
β̂3 + β̂5 + β̂6 + β̂7

)
where ¯̃̄x =

∑
i,t xit1{Tit = 1}∑

it 1{Tit = 1}

where x0 denotes that the value of the covariates before treatment.

Before moving ahead, let’s first be more explicit in our regression specification. Define xit =

[11×2, x̃it1×k
] and β = [α1×2, γ1×k]

′. Then the full regression would be:

yit = α0 + α1 ∗ Tit + α2 ∗ Postt + α∗
3 ∗ Postt ∗ Tit

+ x̃it[γ0 + γ1 ∗ Tit + γ2 ∗ Postt + γ∗
3 ∗ Postt ∗ Tit] + uit

Writing the model this way gives us:

CATTt=1(x0) = α∗
3 + x0 ∗ γ∗

3

ATTt=1 = α∗
3 +

¯̃̄xγ∗
3

How do researchers estimate these effects practically? They make four assumptions:

(1) Replace x̃it with x̃it − ¯̃̄x to demean the treatment group. Then:

ATTt = α∗
3

CATTt(x0) = α∗
3 + (x0 − ¯̃̄x)γ∗

3
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(2) In addition, assume homogenous time effects across x. This then assumes that

γ∗
3 = 0

and so:

CATTt(x0) = ATTt = α∗
3

(3) Then assume that the effect of x does not vary over time (that γ2 = 0 and xit = xi0). This
effectively means that we are strengthening the conditional parallel trends assumption to the
strong parallel trends assumption:

E[yt=1(0)− yt=−1(0) | T, x̃] = [αt=1(0, T )− αt=−1(0, T )] + x̃[γt=1(0, T )− γt=−1(0, T )]

= [αt=1(0, T )− αt=−1(0, T )]

(4) Lastly, also assume that γ1 = γ3 = 0. Under this assumption, x does not help with identification,
but it does help with precision.

After making all these assumptions, we are left with the following specification:

yit = α0 + α1 ∗ Tit + α2 ∗ Postt + α∗
3 ∗ Postt ∗ Tit + γ0(x̃it − ¯̃̄x) + uit

where α∗
3 is the ATTt and CATTt(x) ∀ x.

9.5 Previous Quiz Question

This question tests your knowledge of the difference-in-differences model.

9.5.1 Part a

Consider a difference-in-differences model for the case of two periods, two groups, and pooled cross-
sectional data, but no covariates. Write down the key components of the model seen in class. Your
answer must cover: (i) the correctly specified model for the conditional mean of potential outcomes
E[yt(D) | T ]; (ii) the equation for observed treatment Dt and the equation for observed outcome yt;
(iii) the parallel trend assumption stated in terms of (i); and (iv) the regression equation for yit as a
function of Ti, Postt, and uit.

Solution

Starting with (i):
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(i) The conditional expectation of potential outcomes is:

E[yt(D) | T ] = β0 + β1T + β2Postt + β3D + β4T ∗ Postt

+ β5T ∗D + β6Postt ∗D + β7T ∗ Postt ∗D

(ii) The observed treatment and outcomes are:

Dt = T ∗ Postt and yt = yt(Dt).

(iii) The parallel trends assumption is:

E[yt(0)− yt−1(0) | T = 1] = E[yt(0)− yt−1(0) | T = 0]

(iv) The regression equation is:

yit = δ0 + δ1Ti + δ2Postt + δ3Ti ∗ Postt + uit

9.5.2 Part b

Suppose now that the researcher has a (1 × k) vector of pre-treatment covariates x. (i) How should
we use these covariates to “weaken” the parallel trend assumption? (ii) Write down the parallel trend
assumption with covariates and without covariates. (iii) Explain why PT|x does not imply PT.

Solution

Starting with (i):

(i) We can now assume that parallel trends holds after conditioning on the covariates instead
of having to hold by itself. After controlling for more variation, we are more likely to get
parallel trends in the data.

(ii) The two assumptions are:

E[yt(0)− yt−1(0) | T = 1, x] = E[yt(0)− yt−1(0) | T = 0, x] (PT|x)

E[yt(0)− yt−1(0) | T = 1] = E[yt(0)− yt−1(0) | T = 0] (PT)

(iii) Looking at the left-hand side of PT|x and using LIE:

Ex

E[yt(0)− yt−1(0) | T = 1, x]︸ ︷︷ ︸
Mean over x with treatment

∣∣∣∣∣∣∣T = 1


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Then looking at the right-hand side of PT|x and using LIE:

Ex

 E[yt(0)− yt−1(0) | T = 0, x]︸ ︷︷ ︸
Mean over x w/out treatment

∣∣∣∣∣∣∣∣T = 0


These distributions are not usually the same, so the conditional parallel trends assumption
does not imply the strong parallel trends assumption.

9.5.3 Part c

Suppose a researcher estimates the following regression specification:

yit = α0 + α1Ti + α2 ∗ Postt + α3Postt ∗ Ti + xitγ + uit

List all the simplifying assumptions that this researcher is implicitly making relatively to the flexible
model in class.

Solutions:

The assumptions the researcher makes are:

(a) The effect of covariates are the same across groups, implying that γ1 = 0.

(b) The effect of covariates are the same across time, implying that γ2 = 0.

(c) That there is no treatment effect heterogeneity with respect to x (CATTt(x) = ATTt),
implying that γ3 = 0.

9.6 Adding Panel Data

When we add panel data to the model, the structural equation remains:

yt(D) = xβt(D,T ) + ut where E[ut | T, x] = 0

The theory behind this case is relatively simple: the parallel trends assumptions are the same as in
the previous case. Identification is derived in the same manner as case 2 as well. How do we estimate
this new model? Let’s look at the estimation equation:

yit = xi[β0 + β1Ti + β2Postt + β3Ti ∗ Postt] + uit

This model is the same as before, with one exception: uit is now correlated with uit′ . To make sure
we account for this, we need to cluster standard errors at the individual level.

In applied micro, researchers will commonly use fixed effects to weaken the parallel trends assump-
tions. Does this actually help though? Let’s add an unobserved individual fixed effect, w, to the



90 CHAPTER 9. DIFFERENCE-IN-DIFFERENCES

structural model:

yt(D) = xβt(D,T ) + wδt(D,T ) + ut

Then the conditional parallel trends assumption becomes:

E[yt(0)− yt−1(0) | x,w, T = 1] = E[yt(0)− yt−1(0) | x,w, T = 0] (PT|w,x)

If we estimated this structural equation, our ideal regression equation would be:

yit = xi[β0 + β1Ti + β2Postt + β3Ti ∗ Postt]

+ wi[δ0 + δ1Ti + δ2Postt + δ3Ti ∗ Postt] + uit

But we cannot actually observe wδt(D,T ). So we approximate it with a time-invariant individual fixed
effect ci. Therefore, we can estimate:

yit = xi[β2Postt + β3Ti ∗ Postt] + ci + uit

where ci absorbs all things that do not vary across time. But then PT|w,x is just equal to PT|x, as w

will be differenced out. Therefore, fixed effects do not actually help in identification or efficiency.

We can use the fixed effects idea, though, to greatly simplify the structural model. Including ci

gives us:

yit = α2 + α∗
3Ti ∗ Postt + x̃i[γ2Postt + γ∗

3Ti ∗ Postt] + ci + uit

where ci = α0 + α1Ti + γ0x̃i + γ1Tix̃i

As we just showed, estimation using fixed effects does not improve the regression, so estimating this
equation using either POLS or fixed effects is identical.

9.7 Adding More Groups and Time Periods

Suppose now that we have more than two groups and more than two time periods. Also suppose that
different groups could be treated at different times. How do we analyze this situation? Let’s first start
with a picture that shows a three group, three time period model so we can understand this scenario:
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Going forward, we will write the potential outcomes framework as:

Yt(τ) where τ ∈ {0, 1, 2}

where 0 denotes no treatment, 1 denotes treatment at time t = 1, and 2 denotes treatment at time
t = 2. We can write the population structural model as:

yt(τ) = xβt(τ, T ) + ut with E[ut | T, x] = 0

Remember that T , t ∈ {0, 1, 2}. If we listed all the parameters, we would have 3 × 3 × 3 = 27. We
would have 9 dummies:

T 0, T 1, T 2 (Groups)

τ0, τ1, τ2 (Pot. Outcomes)

P 0
t , P

1
t , P

2
t (Years)

Of course, because we cannot observe τ , we set τ = T × 1{T ≥ t}.

9.7.1 Parallel Trend Assumption

With more than two groups and two time periods, how do we construct the parallel trend assumption?
First, denote the group label as g ∈ {0, 1, 2}. Second, note that we will need two parallel trend
assumptions: one with respect to the group that is never treated, and one with respect to a group that
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is not yet treated.

E[yt(0)− yt−1(0) | T = g, x] = E[yt(0)− yt−1(0) | T = 0, x] (PT, never treated)

E[yt(0)− yt−1(0) | T = g1, x] = E[yt(0)− yt−1(0) | T = g0, x] (PT, not yet treated)

where g0 denotes the group that is not yet treated and g1 denotes the group that has already been
treated.

9.7.2 Identification

Our causal effects do not really change:

ATTt(g) = E[yt(g)− yt(0) | T = g]

CATTt(g, x) = E[yt(g)− yt(0) | T = g, x]

We can see by these definitions that the causal effects will differ by the groups analyzed. Let’s look at
ATT2(1) as an example.

CATT2(1, x) = E

y2(1)− y2(0)︸ ︷︷ ︸
Unobserved

∣∣∣∣∣∣T = 1, x

 using PT, never treat:

= E[y2(1) | T = 1, x]− {E[y2(0) | T = 0, x]

+ E[y0(0) | T = 1, x]− E[y0(0) | T = 0, x]}

= E[y2(1) | T = 1, x]− E[y2(0) | T = 0, x]

− {E[y0(0) | T = 1, x]− E[y0 | T = 0, x]}

= ATT2(1)

where the last equality comes from the proof we did for the initial conditional parallel trend assumption
last recitation.

It turns out that we can do this proof if g = 1, 2 and t ≥ g. The following chart gives the table for
the ATTt(g) we can identify.
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9.7.3 Regression Specification

The following equation details the full regression set-up:

yit = α0P
0
t + α1P

1
t + α2P

2
t︸ ︷︷ ︸

Time trend for T=0

+

Time trend for T=1,2︷ ︸︸ ︷
β1T

1
i + β2T

2
i︸ ︷︷ ︸

with no treatment

+ATT1(1)T
1
i P

1
t +ATT2(1)T

1
i P

2
t︸ ︷︷ ︸

ATT s for g = 1

+ATT2(2)T
2
i P

2
t︸ ︷︷ ︸

ATT for g = 2

+(xi − x̄i)[α
x
0P

0
t + αx

1P
1
t + αx

2P
2
t + βx

1T
1
i

+ βx
2T

2
i + γ1,1T

1
i P

1
t + γ2,1T

1
i P

2
t + γ2,2T

2
i P

2
t ] + uit (9.1)

The aquamarine-colored terms denote those terms that would be absorbed by individual fixed effects.
We can estimate equation 1 using either POLS with clustered robust standard errors or fixed effects
with clustered robust standard errors.

Two-Way Fixed Effects

What if we wanted to simplify the model by using a fixed effect term for individuals and a fixed effect
term for time? Then we could set up the regression as:

yit = µt + βDit + ci + (xi − x̄i)γ + uit where Dit =

1 if τit ≥ 1

0 if τit = 0
(9.2)

where µt is the year fixed effect term and ci is the individual fixed effect term. Note that by setting
up the model as in equation 2, we are implicitly assuming that all the ATT s in equation 1 (colored
red) are the same. We are also assuming that the effects of covariates are homogenous (meaning that
αx
i = βx

i = 0 and γ1,1 = γ2,1 = γ2,2 in equation 1).
While nice, this equation is a gross simplification of the underlying model. Because of that, there

are some potential issues. Goodman-Bacon (2021) demonstrates that asymptotically:

β̂FE P−→ VWATT + VWCT −∆ATT

where VWATT stands for the variance-weighted ATT and VWCT stands for the variance weighted
change in trends. In his paper, Goodman-Bacon derives these three objects:

VWATT =
σ10

2
[ATT1(1) +ATT2(1)] + σ20ATT2(2) + σ

(1)
12 ATT1(1) + σ

(2)
12 ATT2(2)

∆ATT = σ
(2)
12 [ATT2(1)−ATT1(1)]

VWCT = 0

where σ·· > 0,
∑

σ = 1. Note that if the ATT is constant across time, ∆ATT = 0. VWCT = 0 only
under the parallel trends assumption with respect to a group that is not yet treated. If we put all of
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this together, only assuming parallel trends with respect to a group not yet treated:

β̂FE P−→ ATT1(1)
[σ10

2
+ σ

(1)
12 + σ

(2)
12

]
+ATT2(1)

[σ10

2
− σ

(2)
12

]
+ATT2(2)[σ20 + σ

(2)
12 ]

This is just a weighted average of the ATT s. But note that the coefficient on ATT2(1) has a −σ
(2)
12 .

Therefore, even if each ATT is positive, β̂FE could end up negative! This result is known as the
Goodman-Bacon critique of Two-Way Fixed Effects models.



Chapter 10

Event Studies, Clustering, and LATE

10.1 Event Studies

What if we could track the outcome, y, for each time-period before and after a treatment? Event
study designs allow this. Let θes(e) denote the average effect of treatment “e” periods after treatment.
A graph depicting θes(e) could look like:

where e = 0 is the treatment time. How do we graph this? We use the formula:

θes(e) =

G∑
g=0

weights, w(g, t)︷ ︸︸ ︷
1{g + e ≤ H}P (T = g | T + e ≤ H)ATTg+e(g)

Using our example from last time (g=3, H=3), we get:

θes(0) = P (T = 1 | T ∈ {1, 2})ATT1(1) + P (T = 2 | T ∈ {1, 2})ATT1(2)

θes(1) = ATT2(1)

because group 1 is observed during the period it is treated and one period after, while group 2 is

95
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observed only during the period it is treated.

Now that we have this tool, we can gather data before treatment to plot y prior to t = 0. In this
way, we can test the parallel trends assumption. Two examples include:

The figure on the left has parallel trends prior to treatment, while the figure on the left clearly does
not. To formally test this, we can run a regression with the following specification:

yit =

H∑
u=0

{
α0
uP

u
t +

G∑
g=1

αg
uP

u
t ∗ T g

i

}
+ εit

and test the following hypothesis:

H0 : αg
0 = αg

1 = ... = αg
g−1

HA : Any αg
u is different from another

where groups are ordered by treatment time. The following picture demonstrates the idea:

If all the αg
u’s are the same, then we conclude that the parallel trends assumption holds. If they are

not, then we must use a different regression design or attempt a triple difference-in-differences.
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10.2 Clustering

Clustering is a method for addressing correlations within a hierarchical data set (this simply means that
observations are linked to each other). As an example, think of observing ACT test scores within New
York City. There is a high probability that students in the same school are going to have correlated test
scores. Therefore, each observation inside a school is linked to other observations inside that school.
To obtain correct standard errors, we would want to cluster by school.

Clustering eliminates the cross-correlation at the level of clustering. By clustering at the school
level, we eliminate cross-correlation at the school level. How do we show this mathematically? First
consider the following regression:

yig = β0 + β1xg + uig

Naturally, we would estimate this using POLS:

β̂ =

(
G∑

g=1

x′
gxg

)−1( G∑
g=1

x′
gyg

)

Here, we make the assumption that the clustering structure is known (that we know g). We also
assume that (yg, xg) are independent across g. The proof for the asymptotic distribution is the same
as the standard POLS proof. Hence, we get the following asymptotic variance:

AV AR = G

(
G∑

g=1

x′
gxg

)−1( G∑
g=1

x′
gugu

′
gxg

)(
G∑

g=1

x′
gxg

)−1

This is the sandwich estimator, robust to both conditional heteroskedasticity and in-cluster correlation.
Note though, that this requires us to assume that G −→ ∞ while ng (the number of observations in
each group) grows at a fixed rate. We might worry about precision if G is small.

This caveat raises an important question: What if there are multiple levels to at which we might
cluster? In our example, now suppose we have multiple cities in our data set. We can now cluster at
either the school level or the city level. There are two considerations:

(1) If we cluster at too fine a level, the variance estimate will be both biased and inconsistent.

(2) If we cluster at too coarse a level, we reduce G and the variance becomes much less precise.

Note that just because the standard error increases, this does not mean we are accounting for the
cross-correlation, especially if G is very small. The variance estimator could just be picking up random
noise. In this sense, choosing the clustering level is more of an art than a science.
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Panel Data

Suppose instead we have panel data, so the model looks like:

yit = xitβ + ci + uit

yi = xiβ + ciξT + ui︸ ︷︷ ︸
≡ vi using POLS

We can do POLS again, if we want to assume that E[vi | xi] = 0. After clustering, the robust variance
would be:

AV ARPOLS = G

(
G∑

g=1

x′
gxg

)−1( G∑
g=1

x′
gvgv

′
gxg

)(
G∑

g=1

x′
gxg

)−1

We can also estimate using fixed effects. Then the robust variance would be:

AV ARFE = G

(
G∑

g=1

ẍ′
gẍg

)−1( G∑
g=1

ẍ′
gügü

′
gẍg

)(
G∑

g=1

ẍ′
gẍg

)−1

Let’s consider two scenarios. First, suppose we cluster at the individual level. Then:

– Fixed Effects eliminate cig.

– There is correlation across time (between uigt and uigs).

– There is no need to cluster if cig eliminates time correlation (essentially means that time corre-
lation only exists in individuals and/or groups).

Second, suppose that we cluster at the group level. Then:

– Fixed Effects still eliminates cig.

– Within group corr(uigt, ujgt) ̸= 0 or corr(uigt, uigs) ̸= 0.

– Across groups, there will be no correlation across individuals nor across time.

– We do not cluster at the group level if corr(cig, cjg) captures the spatial correlation across
individuals in the same group. Then there is no need to cluster at g.

10.3 LATE

LATE, or local average treatment effects, is a model that provides identified causal effects while
requiring few assumptions on the underlying data structures. Suppose we have two variables, an
outcome yi and a treatment dummy xi. Also suppose that these two variables are generated using
some DGP such that:

yi = h(xi, ui)

xi = g(zi, vi)
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where zi is a binary instrument. Previously, when looking for a treatment effect, we essentially used
the following strategy:

yi = β + ui

−(yi = ui)

β

Now, we will use another potential outcomes framework (from Rubin 1974) to get different treatment
effects for each i:

yi(1) = h(1, ui)

−(yi(0) = h(0, ui))

h(1, ui)− h(0, ui)

We run into the same problem as in difference-in-differences though: we cannot actually observe yi(0).
So we cannot observe the average treatment effect E[yi(1)− yi(0)]. We also cannot take CATE:

CATE = E[yi | xi = 1]− E[yi | xi = 0]

as there may be bias inherent in group selection (remember, we imposed no restrictions on the DGP
for xi). We can, however, find the average treatment effect over a subpopulation. Using the notation
of x(T ) = D, where D denotes actual treatment and T denotes treatment group. Using this, we can
develop a table:

Table 1

LATE Subpopulations

x(0) = 0 x(0) = 1

x(1) = 0 Never-Taker Defier

x(1) = 1 Complier Always-Taker

If we assume that the “Defiers” do not exist, then we can identify the average treatment effect on
“Compliers.” LATE is defined as:

LATE = E[yi(1)− yi(0) | xi(0) = 0, xi(1) = 1]

Let’s first decompose xi, noting that we can write xi in the potential outcome framework by defining
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xi(1) = g(1, vi) and xi(0) = g(0, vi):

xi = (1− zi)xi(0) + zixi(1)

= xi(0) + zi(xi(1)− xi(0)) (1)

Expand yi:

yi = (1− xi)yi(0) + xiyi(1)

= yi(0) + xi(yi(1)− yi(0)) (2)

Plug (1) into (2):

yi = yi(0) + xi(0)(yi(1)− yi(0)) + zi(xi(1)− xi(0))(y1(1)− yi(0)) (3)

Assuming that the instrument z is valid, we can subtract the two conditional expectations of (3).8

E[y | z = 1] = E[y(0)] + E[x(0)(y(1)− y(0))] + E[(x(1)− x(0))(y(1)− y(0))]

− (E[y | z = 0] = E[y(0)] + E[x(0)(y(1)− y(0))])

E[y | z = 1]− E[y | z = 0] = E[(x(1)− x(0))(y(1)− y(0))]

We can then take this difference and write the right-hand side in terms of the possible values of
x(1)− x(0):

E[y | z = 1]− E[y | z = 0] = (−1)

Defiers, so = 0︷ ︸︸ ︷
P (x(1)− x(0) = −1)E[y(1)− y(0) | x(1)− x(0) = −1]

+ (1)P (x(1)− x(0) = 1)E[y(1)− y(0) | x(1)− x(0) = 1]

= P (x(1)− x(0) = 1)E[y(1)− y(0) | x(1)− x(0) = 1]

But notice that the expectation is simply the definition of LATE. So:

LATE =
E[y | z = 1]− E[y | z = 0]

P (x(1)− x(0) = 1)

=
E[y | z = 1]− E[y | z = 0]

E[x | z = 1]− E[x | z = 0]

Interestingly, this equation for LATE is basically the ILS estimator for IV. Thus, using the model

yi = xiβ + ui

xi = ziπ + vi

we can estimate LATE. Although surprising at first, notice that the right-hand side of each equation
satisfies the model assumptions of LATE: yi is a function of xi and ui while xi is a function of zi and
vi.

8I drop the i subscripts from here on to make the proof cleaner.
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An important note on finding the average treatment effect on compliers: depending on how the
instrument is determined, the local average treatment effect will change.
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Chapter 11

Summary of Econometrics II

11.1 Semester Review

This semester you have covered a lot of material. Below is a list of topics to help you prepare for the
comprehensive exams that take place in approximately one month.

I. System OLS and Generalized Least Squares

A. Identification

B. Consistency

C. Asymptotic normality

D. Feasible GLS

E. Assumptions and decision tree

II. Instrumental Variables

A. OLS assumption violated

B. Additional assumptions for IV

C. Identification

D. Consistency

E. Asymptotic normality

III. Two-Stage Least Squares

A. Difference between IV and 2SLS

B. Identification

C. Consistency

D. Asymptotic normality

E. Control function approach/endogeneity test

103
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F. Durbin-Wu-Hausman test

G. Overidentification test

H. Weak instruments and Stock-Yogo test

IV. Generalized Method of Moments

A. Criterion function

B. Identification given a weighting matrix

C. Consistency

D. Asymptotic normality and optimal weighting matrix

E. Iterated GMM

V. Binary Response Models

A. Linear probability model

B. Probit

C. Logit

D. Partial effects

VI. Censoring and Sample Selection

A. Tobit

B. Partial effects

C. Heckit two-step procedure

D. Heckman selection test

VII. Panel Data

A. Pooled OLS

B. Random effects

C. Fixed effects

D. First differences

E. Assumptions and decision tree

F. Comparing methods, testing assumptions

VIII. Difference-in-Differences

(a) Structural equation

(b) Parallel trends assumptions

(c) ATT and CATT estimation

(d) Two-way fixed effects and the Goodman-Bacon critique
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(e) Event studies and parallel trends test

IX. Clustering

A. Level of clustering

B. Clustering with fixed effects

X. LATE

A. Compliers, defiers, never-takers, always-takers

B. LATE identification

C. IV and LATE

D. Assumptions
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