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Chapter 1

Basics and Review

1.1 Matlab

We need to begin with the structure of Matlab.

• The “Editor” window (upper middle) is where we create the code file. Your saved work will come
from here.

• The “Command” window (bottom middle) contains output from your code. You can also directly
input code here that you don’t want saved.

• The “Current Folder” window (upper left) contains the files specified in the path I have declared
(see below in Matlab Set-up).
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6 CHAPTER 1. BASICS AND REVIEW

• The “Workspace” window (right) contains saved variables, matrices, arrays, etc.

1.1.1 Matlab Set-up

There will be many Matlab assignments throughout the year. Establishing a simple, clean set-up to
your code will make all of our lives easier. Feel free to experiment and create your own, but here is an
example:

There are a couple “tricks” to note:

• The double percent signs, “%%”, create new sections. So in the example, I have the section
"Introduction" and the section “Settings”.

• The single percent sign, “%”, tells Matlab that the following line is a comment and not code.

• The “clear, close all” commands clear the workspace, ensuring I’m not overwriting variables in
other files, and close all figures I have open.

• The “cd(...)” command specifies the path on which Matlab will look for data and function files.

• The semi-colon, “;” suppresses output in the command window.
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1.1.2 Some Useful Commands

• Variables must be defined for values, function outputs, and data if you want to reference them
later in your code.

• To import data, declare your path then read the data into Matlab using “readmatrix” or “readtable.”
See documentation for more details on these commands.

• For loops will be useful in most Matlab assignments. In the example above, I’m creating two
error term vectors with a multivariate normal distribution. Essentially, Matlab is pulling two
random numbers from the distribution 10,000 times. NOTE: Try to avoid triple loops if possible.
These can take a long time to run.

1.1.3 Publishing

Your code needs to be able to run from the beginning to the end with no problems. One easy way to
check this, and also to turn in your code and output, is to publish your code.
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• Usually we work in the Editor tab. To publish, click the Publish tab and then click on Publish.

• When the preview pops up, print to PDF. The end result should look similar to the picture
below.

• Make sure the necessary output is visible in the published PDF. Remember that by using a
semi-colon you suppress the output.

1.1.4 General Advice

• Coding is hard. Do not worry if you are struggling. Find a friend to code with and work through
these together (do make sure you understand what the code is doing).

• Try to reduce run times for your code. Most assignments should be able to run in less than a
minute.

• The internet is your best friend for Matlab (and code in general). Check out places like Matlab
Answers first.

• Make sure to save your work.
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1.2 Math-Stats Review

1.2.1 The Analogy Principle

Suppose we have a function β = h(θ) where θ = E[g(yi)]. We want to estimate β. We do not know
E[g(yi)]. Therefore, we replace θ with θ̂ = 1

n

∑n
i=1 yi. So β̂ = h(θ̂).

Let’s go through an example using variance. Variance is given by :

σ2 = E[X2]− E[X]2

In practice, replace the expectations with the sample mean. Therefore:

σ̂2 =
1

n

n∑
i=1

x2
i −

(
1

n

n∑
i=1

xi

)2

We now have a viable estimate for variance.

1.2.2 Bias

The definition of bias is:

E[θ̂]− θ = bias

If bias = 0, we say that the estimator is unbiased. How does this apply to the analogy principle?
Ideally, we’d like to create unbiased estimators for the parameters we are looking for. Let’s look at the
estimator for the variance that we just found.

First, we should check our two plug-ins to see if they are unbiased.

E

[
1

n

n∑
i=1

x2
i

]
=

1

n
E

[
n∑

i=1

x2
i

]

=
1

n

n∑
i=1

E[x2
i ]

=
1

n
· nE[x2

i ]

= E[x2
i ]

So that part is unbiased. Let’s check the standard mean:
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E

[
1

n

n∑
i=1

xi

]
=

1

n
E

[
n∑

i=1

xi

]

=
1

n

n∑
i=1

E[xi]

=
1

n

n∑
i=1

µ

=
1

n
· nµ

= µ

So this is also unbiased. Let’s check them together in the variance estimate:

E[σ̂2] = E

 1

n

n∑
i=1

x2
i −

(
1

n

n∑
i=1

xi

)2


= E

[
1

n

n∑
i=1

x2
i

]
− E

( 1

n

n∑
i=1

xi

)2


= E

[
1

n

n∑
i=1

x2
i

]
− E

(µ− µ+
1

n

n∑
i=1

xi

)2


= E

[
1

n

n∑
i=1

x2
i

]
− E

(µ+
1

n

n∑
i=1

(xi − µ)

)2


= E

[
1

n

n∑
i=1

x2
i

]
− E

µ2 + 2µ
1

n

n∑
i=1

(xi − µ) +

(
1

n

n∑
i=1

(xi − µ)

)2


= E

[
1

n

n∑
i=1

x2
i

]
− E

[
µ2 + 2µ(x̄− µ) + (x̄− µ)2

]
= E[x2

i ]− µ2 − 2µ(µ− µ)− E[(x̄− µ)2]

= σ2 − V ar(x̄)

= σ2 − V ar

(
1

n

n∑
i=1

xi

)

= σ2 − 1

n2

n∑
i=1

V ar(xi)

= σ2 − 1

n2
· nσ2

= σ2 − σ2

n
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=

(
1− 1

n

)
σ2

Unfortunately, our estimator is biased, where the bias is − 1
nσ

2. Consider the following estimator:

ŝ2 =
1

n− 1

n∑
i=1

[xi − x̄]2

You can prove that this is unbiased on your own. To correct our estimator, we simply add ŝ2

n :

σ̂2
unbiased = σ̂2 +

ŝ2

n

E
[
σ̂2
unbiased

]
= E

[
σ̂2 +

ŝ2

n

]
= E[σ̂2] + E

[
ŝ2

n

]
= σ2 − σ2

n
+

σ2

n

= σ2

1.2.3 Deriving the OLS Estimator

Consider the k × 1 vector of population moment conditions

E[xi(yi − x′
iβ)] = 0

where β is a k × 1 vector of unknown parameters, yi is a scalar and xi is a k × 1 vector.

(a) Solve for the method of moments population parameter β0.

(b) In the solution to (a), the population method of moments parameter β0 is only identified
if what condition holds?

(c) Suppose you observe an i.i.d. sample {yi,xi}ni=1 from some unknown "true" joint dis-
tribution f(yi,xi). Using the analogy principle, propose estimators for the following
population moments:

E[xix
′
i]

E[xix
′
i]
−1

E[xiyi]

(d) Consider again the i.i.d. sample {yi,xi}ni=1 from f(yi,xi). Given your solution to part
(a), use the analogy principle to propose a method of moments estimator β̂n for the
population parameter β0.
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Part a

We first note the moment conditions:

E[xi(yi − x′
iβ)] = 0

Now, solve for β0:

E[xi(yi − x′
iβ)] = 0

E[xiyi]− E[xix
′
i]β = 0

E[xiyi] = E[xix
′
i]β

E[xix
′
i]
−1E[xiyi] = β0

Part b

For there to be one unique solution for β0, we need to be able to solve the equation. E[xiyi] shouldn’t
be a problem, but E[xix

′
i]
−1 may cause issues. If E[xix

′
i] is singular, then we will not be able to find

β0. For a matrix to be invertible, it needs to be full rank. Therefore, we need E[xix
′
i] to be full rank.

This requirement is known as the rank condition.

Part c

Simply apply the analogy principle:

E[xix
′
i] −→

1

n

n∑
i=1

xix
′
i (1.1)

E[xix
′
i]
−1 −→

(
1

n

n∑
i=1

xix
′
i

)−1

(1.2)

E[xiyi] −→
1

n

n∑
i=1

xiyi (1.3)

Part d

Simply plug in our estimators from (c):

β̂n =

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiyi

)



Chapter 2

Classical Linear Regression

2.1 Building the Model

We start with the basic structure of the linear regression model:

y = xβ + ε −or− yi = x′
iβ + εi

On the left, y is an n× 1 vector, x is an n× k matrix, β is a k× 1 vector, and ε is an n× 1 vector. On
the right, yi and εi are scalars, xi is a k × 1 vector (so x′

i is a 1× k vector) and β is a k × 1 vector.

For our coefficient estimators to be the best, unbiased linear estimators (BLUE), we need five
assumptions:

Assumption 1 (Linearity of the Model). All coefficients in the model must be linear.

This assumption is straightforward. β must be linear. It cannot be in an exponent, logged, etc.
Notice that this assumption does not restrict transformations of our variables. For example:

ln(y) = ln(x)β + ε

This equation is fine. But:

y = xln(β) + ε

is not fine.

Assumption 2 (Rank Condition). The right hand side variables, x, must have full column rank:

rank(x) = k

If x does not have full column rank, then later on we will not be able to invert x′x to identify β.

Assumption 3 (Exogeneity of x). The right-hand side variables, x, are exogenously related to the

13



14 CHAPTER 2. CLASSICAL LINEAR REGRESSION

error term, ε:

E[εi|x] = 0

This assumption of strict exogeneity is strong, but necessary for the coefficient estimators to be
unbiased. Later, when we cover asymptotics, we will need a weaker assumption called “orthogonality,”
or E[x′ε] = 0. Strict exogeneity gives us orthogonality automatically:

E[x′ε] = Ex [xE[ε|x]] (Using LIE)

= 0

In addition, strict exogeneity tells us that the errors have mean zero:

E[εi] = Ex [E[εi|x]]

= 0

Therefore, the covariance between εi and x is zero:

Cov(εi, x) = E[xεi]− E[εi]E[x]

= 0− Ex [E[εi|x]]E[x]

= 0

So then the conditional expectation of the model is:

E[y|x] = E[xβ|x] + E[ε|x]

= xβ

Assumption 4 (Spherical Errors). The error terms are homoskedastic and are not cross-correlated:

V ar(εi|x) = σ2 (Homoskedasticity)

Cov(εi, εj) = 0 ∀i ̸= j (No Cross-Correlation)

This assumption implies that V ar(ε|x) = σ2I. We need to assume this for the coefficient estimators
to be considered “best.”

Assumption 5 (Exogenous Data Generating Process). The right hand side variables, x, are exoge-
nously generated.

We treat x as a randomly created variable.

Assumption 6 (Normally Distributed Errors). The error term, ε, is normally distributed after con-
ditioning on the right hand variables, x:

ε|x ∼ N(0, σ2I)
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This assumption is made for convenience and is not necessary for the coefficient estimator to be
BLUE.

2.2 OLS Estimator

In class, you derived the OLS estimator by minimizing the sum of squared residuals. Last week in
recitation, we derived the same estimator by starting with a moment condition. Today, let’s use
algebra.

Starting with the regression model:

y = xβ + ε

x′y = x′xβ + x′ε

E[x′y] = E[x′xβ] + E[x′ε]

E[x′y] = E[x′x]β + E[x′ε] (Use exogeneity)

E[x′y] = E[x′x]β + 0 (Use rank condition)

E[x′x]−1E[x′y] = β (Use analogy principle)(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiyi

)
= β̂

2.2.1 Linear Projection

Define the linear projection as:

p(x) = x′γ

The best linear projection minimizes the mean squared error:

mse (p(x)) = E[ε2]

= E
[
(y − x′γ)2

]
= E

[
((y − E[y|x]) + (E[y|x]− x′γ))

2
]

= E
[
(y − E[y|x])2

]
+ 2E [(y − E[y|x])(E[y|x]− x′γ)] + E

[
(E[y|x]− x′γ)2

]
Let’s look at just the middle term first:

2E [(y − E[y|x])(E[y|x]− x′γ)] = 2E
[
yE[y|x]− yx′γ − E[y|x]2 + E[y|x]x′γ

]
= 2

(
E[y]E[y|x]− E[yx′]γ − E[y|x]2 + E[yx′|x]γ

)
= 2

(
Ex

[
E[y|x]2

]
− Ex [E[y|x]x′] γ − Ex

[
E[y|x]2

]
+ Ex [E[y|x]x′] γ

)
= 0
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Back to the mean-squared error:

mse (p(x)) = E
[
(y − E[y|x])2

]
+ E

[
(E[y|x]− x′γ)2

]
We want to minimize, so take the derivative with respect to γ:

∂mse (p(x))

∂γ
= 2E [x(E[y|x]− x′γ)] = 0

2E [xE[y|x]]− 2E[xx′]γ = 0

E[xx′]−1E[xy] = γ

Now we know that, if the true process isn’t in the space generated by the right-hand side variables,
the best linear predictor is still the OLS estimator.

Projection of y

Suppose we want the best linear prediction of the dependent variable y. Then we would use our
right-hand side variables and the estimated β:

ŷ = xβ̂

If we rearrange this equation:

ŷ = x(x′x)−1x′y

= Py

where P = x(x′x)−1x′. We call P the projection matrix.

Projection Matrix

Let x be an n×k matrix that is full rank. Then the projection matrix P is an n×n that results from:

P = x(x′x)−1x′

The projection matrix can be shown to have the following properties:

(i) Px = x

(ii) P = P ′

(iii) PP = P

(iv) tr(P ) = k and rank(P ) = k

We can use the projection matrix to find estimated ŷ values in our regressions.
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Annihilator Matrix

Let x be an n × k matrix that is full rank. Then the annihilator matrix M is an n × n that results
from:

M = I − P

= I − x(x′x)−1x′

The annihilator matrix can be shown to have the following properties:

(i) Mx = 0

(ii) MP = 0

(iii) M = M ′

(iv) MM = M

(v) tr(M) = n− k and rank(M) = n− k

We can use the annihilator matrix to remove parts of the regression that we are not interested in
estimating.

2.2.2 Partitioned Regression

Let x be composed of x1 and x2. Then we can write the regression model as:

y = xβ + ε

= x1β1 + x2β2 + ε

Rearranging the original equation above:

x′y = x′xβ + x′ε

E[x′y] = E[x′x]β

Applying the analogy principle and stacking vectors, let’s put this in matrix form:[
x′
1x1 x′

1x2

x′
2x1 x′

2x2

][
β̂1

β̂2

]
=

[
x′
1y

x′
2y

]

Take the first equation (the top line). Let’s solve for β̂1:

(x′
1x1)β̂1 + (x′

1x2)β̂2 = x′
1y

β̂1 = (x′
1x1)

−1x′
1y − (x′

1x1)
−1(x′

1x2)β̂2 (∗)
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Now take equation two:

(x′
2x1)β̂1 + (x′

2x2)β̂2 = x′
2y (Plug in β̂1:)

(x′
2x1)

(
(x′

1x1)
−1x′

1y − (x′
1x1)

−1x′
1x2β̂2

)
+ (x′

2x2)β̂2 = x′
2y

(x′
2x1)(x

′
1x1)

−1x′
1y − (x′

2x1)(x
′
1x1)

−1x′
1x2β̂2 + (x′

2x2)β̂2 = x′
2y

(x′
2x2)β̂2 − (x′

2x1)(x
′
1x1)

−1x′
1x2β̂2 = x′

2y − (x′
2x1)(x

′
1x1)

−1x′
1y

x′
2

(
I − x1(x

′
1x1)

−1x′
1

)
x2β̂2 = x′

2(I − x1(x
′
1x1)

−1x′
1)y

x′
2(I − P1)x2β̂2 = x′

2(I − P1)y

x′
2M1x2β̂2 = x′

2M1y

β̂2 = (x′
2M1x2)

−1(x′
2M1y)

Theorem 1 (Frisch-Waugh-Lovell). Let the regression model be as follows:

y = x1β1 + x2β2 + ε

Then the estimate for β2 will be the same as the estimate from the following model:

M1y = M1x2β2 +M1u

This is the estimator we derived above. What is the variance of the FWL estimator?

V ar(β̂2|x) = V ar
(
(x′

2M1x2)
−1(x′

2M1y)|x
)

= V ar
(
(x′

2M1x2)
−1(x′

2M1x2)β + (x′
2M1x2)

−1(x′
2M1ε)|x

)
= V ar

(
(x′

2M1x2)
−1(x′

2M1ε)|x
)

= E
[(
(x′

2M1x2)
−1(x′

2M1ε)
) (

(x′
2M1x2)

−1(x′
2M1ε)

)′∣∣∣x]
= (x′

2M1x2)
−1x2M1E[εε′|x]M1x2(x

′
2M1x2)

−1

= (x′
2M1x2)

−1x2M1σ
2IM1x2(x

′
2M1x2)

−1

= σ2(x′
2M1x2)

−1x2M1M1x2(x
′
2M1x2)

−1

= σ2(x′
2M1x2)

−1x2M1x2(x
′
2M1x2)

−1

= σ2(x′
2M1x2)

−1

What would happen if we just ran a regression of y on x1, ignoring x2? Would this estimator be biased
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or unbiased? We start by going back to equation (∗):

β̂1 = (x′
1x1)

−1x′
1y − (x′

1x1)
−1(x′

1x2)β̂2 (∗)

β̂1 = β̃1 − (x′
1x1)

−1(x′
1x2)β̂2

β̃1 = β̂1 + (x′
1x1)

−1(x′
1x2)β̂2

E[β̃1|x] = E[β̂1|x] + (x′
1x1)

−1(x′
1x2)E[β̂2|x]

E[β̃1|x] = β1 + (x′
1x1)

−1(x′
1x2)β2

So E[β̃1] ̸= β1 unless β2 = 0 or (x′
1x1)

−1(x′
1x2) = 0.
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Chapter 3

Bias and Consistency

3.1 Practice Problem 1: Hansen 2.16

Let X and Y have the joint density f(x, y) = 3
2 (x

2 + y2) on 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.

a) Compute the coefficients of the best linear predictor of Y = α+ βX + ε.

b) Compute the conditional expectation m(x) = E[Y |X = x]. Is the BLP different from the
conditional expectation?

3.1.1 Solution

Part a

As in class, the BLP is defined as:

P (y|x) = x′β∗

So we need to calculate β∗. Return to your notes to find that:

β∗ = E[xx′]−1E[xy]

where x = [1 x]′. Let’s multiply out the two parts of β∗. First, E[xx′]:

E

[[
1

x

] [
1 x

]]
=

[
1 E[x]

E[x] E[x2]

]

Then E[xy]:

E

[[
1

x

]
· y

]
=

[
E[y]
E[xy]

]

21
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To calculate these two parts, let’s first break the joint distribution into the two marginal distributions:

f(x) =

∫ ∞

−∞
f(x, y)dy

=

∫ 1

0

3

2
(x2 + y2)dy

=
3

2
x2y +

3

2

1

3
y3
]1
0

=
3

2
x2 +

1

2

f(y) =

∫ ∞

−∞
f(x, y)dx

=

∫ 1

0

3

2
(x2 + y2)dx

=
3

2

1

3
x3 +

3

2
y2x

]1
0

=
3

2
y2 +

1

2

Now we can calculate the components of the estimator that we need:

E[x] =
∫ ∞

−∞
xf(x)dx

=

∫ 1

0

3

2
x3 +

1

2
xdx

=
3

2

1

4
x4 +

1

4
x2

]1
0

=
3

8
+

1

4

=
5

8

E[y] =
∫ ∞

−∞
yf(y)dy

=

∫ 1

0

3

2
y3 +

1

2
ydy

=
3

2

1

4
y4 +

1

4
y2
]1
0

=
3

8
+

1

4

=
5

8
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E[x2] =

∫ ∞

−∞
x2f(x)dx

=

∫ 1

0

3

2
x4 +

1

2
x2dx

=
3

2

1

5
x5 +

1

2

1

3
x3

]1
0

=
3

10
+

1

6

=
7

15

E[xy] =
∫ ∞

−∞

∫ ∞

−∞
xyf(x, y)dxdy

=

∫ 1

0

∫ 1

0

3

2
xy(x2 + y2)dxdy

=

∫ 1

0

∫ 1

0

3

2
(x3y + xy3)dxdy

=

∫ 1

0

3

2

[
1

4
x4y +

1

2
x2y3

]1
0

dy

=
3

2

∫ 1

0

1

4
y +

1

2
y3dy

=
3

2

[
1

8
y2 +

1

8
y4
]1
0

=
3

2
× 1

4

=
3

8

We now have all the moments that we need. Let’s plug them into the β∗ equation:

β∗ =

[
1 5

8
5
8

7
15

]−1 [
5
8
3
8

]

=
1

7
15 −

(
5
8

)2
[

7
15 − 5

8

− 5
8 1

][
5
8
3
8

]

=
960

73

[
11
192

− 1
64

]

=

[
55
73

− 15
73

]

Therefore, the BLP is:

P (y|x) = 55

73
− 15

73
x
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Part b

To find the conditional expectation, we need to find the conditional distribution:

f(y|x) = f(x, y)

f(x)

=
3
2 (x

2 + y2)
3
2x

2 + 1
2

=
3x2 + 3y2

3x2 + 1

Now let’s take the conditional expectation:

E[y|x] =
∫ ∞

−∞
yf(y|x)dy

=

∫ 1

0

y
3x2 + 3y2

3x2 + 1
dy

=
1

3x2 + 1

∫ 1

0

3x2y + 3y3dy

=
1

3x2 + 1

[
3

2
x2y2 +

3

4
y4
]1
0

=
3x2

6x2 + 2
+

3

12x2 + 4

=
6x2 + 3

12x2 + 4

This is not the same as the BLP.

3.2 Asymptotic Theorems

There are three main consistency theorems you will need to know well.

3.2.1 Weak Law of Large Numbers

Let {xi} be a sequence of i.i.d. random variables with E[xi] = µ and V ar(xi) = σ2 < ∞. Then:

1

n

n∑
i=1

xi
P−→ µ

Theorem 2. If {xi} is an i.i.d. sequence of random variables with E[|g(xi)|] < ∞, then:

1

n

n∑
i=1

g(xi)
P−→ E[g(x)]

To prove this theorem, simply use the weak law of large numbers and the properties of independent
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variables.

3.2.2 Continuous Mapping Theorem

Let xn be a sequence of real-valued random vectors and let h : Rk → Rm. Define the set of discontin-
uous points as:

Dh = {x ∈ X : h(·) is discontinuous at x}

Now, if P (x ∈ Dh) = 0 and:

(i) if xn
P−→ x, then h(xn)

P−→ h(x)

(ii) if xn
d−→ x, then h(xn)

d−→ h(x)

(iii) if xn
a.s.−→ x, then h(xn)

a.s.−→ h(x)

3.2.3 Slutsky’s Theorem

If xn
d−→ x and yn

P−→ y, then:

(i) xn + yn
d−→ x+ y

(ii) xnyn
d−→ xy

(iii) xn

yn

d−→ x
y if y ̸= 0

Slustsky’s theorem is a special case of the continuous mapping theorem. Keep in mind that it still holds
if xn converges in probability instead. In that scenario, parts (i), (ii), and (iii) converge in probability
instead of in distribution.

3.3 Practice Problem 2: Hansen 4.23 and 7.2

Define the ridge regression estimator as:

β̂ =

(
n∑

i=1

(XiX
′
i) + λIk

)−1( n∑
i=1

XiYi

)

where λ > 0 is a constant.

a) Find E[β̂|X]. Is β̂ a biased estimator for β?

b) Find the probability limit of β̂ as n → ∞. Is β̂ consistent for β?
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3.3.1 Solution

Part a

Take the conditional expectation of the ridge estimator:

E[β̂|X] = E

( n∑
i=1

(XiX
′
i) + λIk

)−1( n∑
i=1

XiYi

)∣∣∣∣∣∣X


= E

( n∑
i=1

(XiX
′
i) + λIk

)−1( n∑
i=1

Xi(X
′
iβi + εi)

)∣∣∣∣∣∣X


=

(
n∑

i=1

(XiX
′
i) + λIk

)−1( n∑
i=1

XiX
′
i

)
β +

(
n∑

i=1

(XiX
′
i) + λIk

)−1

E

[(
n∑

i=1

Xiεi

)∣∣∣∣∣X
]

=

(
n∑

i=1

(XiX
′
i) + λIk

)−1( n∑
i=1

XiX
′
i

)
β +

(
n∑

i=1

(XiX
′
i) + λIk

)−1 n∑
i=1

XiE [εi|X]

=

(
n∑

i=1

(XiX
′
i) + λIk

)−1( n∑
i=1

XiX
′
i

)
β

This is not β, so the ridge regression estimator is biased.

Part b

Start from the estimator (I have simply multiplied and divided by n):

β̂ =

(
1

n

n∑
i=1

(XiX
′
i) +

λ

n
Ik

)−1(
1

n

n∑
i=1

XiYi

)

Take each piece individually first. We know that by the Weak Law of Large Numbers:

1

n

n∑
i=1

xix
′
i

P−→ E[xix
′
i]

1

n
λIk −→ 0

1

n

n∑
i=1

xiyi
P−→ E[xiyi]

In addition, from Slutsky’s theorem:

1

n

n∑
i=1

(XiX
′
i) +

λ

n
Ik

P−→ E[XiX
′
i]



3.3. PRACTICE PROBLEM 2: HANSEN 4.23 AND 7.2 27

and by the continuous mapping theorem:(
1

n

n∑
i=1

(XiX
′
i) +

λ

n
Ik

)−1

P−→ E[XiX
′
i]
−1

So by using Slutsky’s theorem again:(
1

n

n∑
i=1

(XiX
′
i) +

λ

n
Ik

)−1(
1

n

n∑
i=1

XiYi

)
P−→ E[XiXi]

−1E[XiYi]

β̂
P−→ β

So the ridge regression estimator is consistent.
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Chapter 4

Applying OLS Fundamentals

4.1 Practice Problem: Hansen 7.7

Of the variables (Y ∗, Y,X), only (Y,X) are observed. In this case, we say that Y ∗ is a latent variable.
Suppose

Y ∗ = X ′β + ε

E[Xε] = 0

Y = Y ∗ + u

u is a measurement error and satisfies:

E[Xu] = 0

E[Y ∗u] = 0

Denote the OLS coefficient from the regression of Y on X as β̂.

(a) Is β the coefficient from the linear projection of Y on X?

(b) Is β̂ consistent for β as n → ∞?

(c) Find the asymptotic distribution of
√
n
(
β̂ − β

)
as n → ∞.

4.1.1 Part a

Starting with β:

β = E[xix
′
i]
−1E[xiy

∗
i ]

= E[xix
′
i]
−1E[xi(yi − ui)]

= E[xix
′
i]
−1E[xiyi]− E[xix

′
i]
−1E[xiui]

= E[xix
′
i]
−1E[xiyi]

29
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So the true β is the same as the linear projection.

4.1.2 Part b

Use the analogy principle and then go from there:

β̂ =

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiyi

)

=

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xi(y
∗
i + ui)

)

=

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiy
∗
i

)
+

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiui

)

=

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xi(x
′
iβ + εi)

)
+

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiui

)

= β +

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiεi

)
+

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiui

)
(∗)

P−→ β + E[xix
′
i]
−1E[xiεi] + E[xix

′
i]
−1E[xiui]

= β

So β̂
P−→ β.

4.1.3 Part c

Starting from (∗), subtract β from both sides:

β̂ − β =

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiεi

)
+

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiui

)
√
n
(
β̂ − β

)
=

(
1

n

n∑
i=1

xix
′
i

)−1(
1√
n

n∑
i=1

xiεi

)
+

(
1

n

n∑
i=1

xix
′
i

)−1(
1√
n

n∑
i=1

xiui

)

=

(
1

n

n∑
i=1

xix
′
i

)−1(
1√
n

n∑
i=1

xi(εi + ui)

)
(1)

First, we must show that the mean of our
√
n term is zero:

E

[
1

n

n∑
i=1

xi(εi + ui)

]
=

1

n

n∑
i=1

(E[xiεi] + E[xiui])

= 0
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We know that the multivariate central limit theorem will therefore hold. Now we must find the variance:

V ar

(
1√
n

n∑
i=1

xi(εi + ui)

)
=

1

n
V ar

(
n∑

i=1

(xiεi + xiui)

)

=
1

n

{
E

[
V ar

(
n∑

i=1

(xiεi + xiui)

∣∣∣∣∣x
)]

+ V ar

(
E

[
n∑

i=1

(xiεi + xiui)

∣∣∣∣∣x
])}

=
1

n
E

[
n∑

i=1

xiV ar (εi + ui|x)x′
i

]
(2)

Before we go forward, we must additionally assume that ui and εi are independent from each other so
that the conditional covariance term is zero.

Continuing on from equation (2), we now make the standard assumption that all of our variables
are i.i.d. and the errors are homoskedastic:

1

n
E

[
n∑

i=1

xiV ar (εi + ui|x)x′
i

]
= E[xi(σ

2
ε + σ2

u)x
′
i]

And now we go back to equation (1):

√
n
(
β̂ − β

)
d−→ E[xix

′
i]
−1N

(
0,E[xi(σ

2
ε + σ2

u)x
′
i]
)

= N
(
0, (σ2

ε + σ2
u)E[xix

′
i]
−1
)

4.2 Delta Method

If
√
n (xn − x)

d−→ ξ and h(u) is a continuously differentiable function, then:

√
n(h(xn)− h(x))

d−→ H ′ξ

where H = ∂
∂uh(u)

T . In particular, if ξ ∼ N(0, V ), then:

√
n(h(xn)− h(x))

d−→ N(0, H ′V H)

4.3 Practice Problem: Intro Hansen 8.8

Assume that:

√
n

(
θ̂1 − θ1

θ̂2 − θ2

)
d−→ N(0,Σ)

Use the Delta Method to find the asymptotic distribution of the following statistics:
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(a) θ̂1θ̂2

(b) eθ̂1+θ̂2

(c) If θ2 ̸= 0, θ̂1
θ̂2
2

(d) θ̂31 + θ̂1θ̂
2
2

4.3.1 Part a

Using Slutsky’s Theorem, we know that θ̂1θ̂2
P−→ θ1θ2 since θ̂1

P−→ θ1 and θ̂2
P−→ θ2 from the set-up

of the problem. So we only need to find the asymptotic variance. Using the Delta Method, we start
with H:

H =
∂

∂θ
θ1θ2

=

[
θ2

θ1

]

We are given that V = Σ, so the asymptotic distribution is:

√
n(θ̂1θ̂2 − θ1θ2)

d−→ N

0,

[
θ2

θ1

]T
Σ

[
θ2

θ1

]
4.3.2 Part b

We know that eθ̂1+θ̂2 P−→ eθ1+θ2 by the Continuous Mapping Theorem since θ̂1 + θ̂2
P−→ θ1 + θ2 by

Slutsky’s Theorem and the exponential transformation is continuous. We now find H:

H =
∂

∂θ
eθ1+θ2

=

[
eθ1+θ2

eθ1+θ2

]

Putting this altogether:

√
n
(
eθ̂1+θ̂2

)
d−→ N

0,

[
eθ1+θ2

eθ1+θ2

]T
Σ

[
eθ1+θ2

eθ1+θ2

]
4.3.3 Part c

We know that θ̂1
θ̂2
2

P−→ θ1
θ2
2

by the CMT, as division is continuous as long as the denominator is not zero

(which we are given), since by the CMT θ̂22
P−→ θ22. We now find H:
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H =
∂

∂θ

θ1
θ22

=

[
1
θ2
2

− 2θ1
θ3
2

]

Altogether, we now have:

√
n

(
θ̂1

θ̂22
− θ1

θ22

)
d−→ N

0,

[
1
θ2
2

− 2θ1
θ3
2

]T
Σ

[
1
θ2
2

− 2θ1
θ3
2

]

4.3.4 Part d

We know that θ̂31 + θ̂1θ̂
2
2

P−→ θ31 + θ1θ
2
2 by the CMT since θ̂31

P−→ θ31 by the CMT, θ̂22
P−→ θ22 by the

CMT, and θ̂1θ̂
2
2

P−→ θ1θ
2
2 by Slutsky’s theorem. We now find H:

H =
∂

∂θ

(
θ31 + θ1θ

2
2

)
=

[
3θ21 + θ22

2θ1θ2

]

Now pulling this all together:

√
n
(
θ̂31 + θ̂1θ̂

2
2 − (θ31 + θ1θ

2
2)
)

d−→ N

0,

[
3θ21 + θ22

2θ1θ2

]T
Σ

[
3θ21 + θ22

2θ1θ2

]

4.4 Practice Problem: Hansen 3.13

Let D1 and D2 be vectors of ones and zeroes, with the ith element of D1 equaling one if that observation
is male and zero if that observation is female (D2 being the opposite). Then:

(a) In the OLS regression

Y = D1γ̂1 +D2γ̂2 + µ̂

show that γ̂1 is the sample mean of the dependent variable among men in the sample
and that γ̂2 is the sample mean among women.
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(b) Let Xn×k be an additional matrix of regressors. Describe in words the transformations

Y ∗ = Y −D1Ȳ1 −D2Ȳ2

X∗ = X −D1X̄
′
1 −D2X̄

′
2

Where X̄1 and X̄2 are the k×1 means of the regressors for men and women, respectively.

(c) Compare β̃ from the OLS regression

Y ∗ = X∗β̃ + ẽ

with the β̂ from the OLS regression

Y = D1α̂1 +D2α̂2 +Xβ̂ + ê

4.4.1 Part a

We first take the general formula for the OLS estimator:

β = (X ′X)−1(X ′Y )

Looking at the OLS equation we are estimating, we see that

X =
[
D1 D2

]
Calculating X ′X then:

X ′X =

[
D′

1D1 D′
1D2

D′
2D1 D′

1D1

]

=

[
n1 0

0 n2

]

We can then invert this by using properties of a diagonal block matrix:

(X ′X)−1 =

[
1
n1

0

0 1
n2

]

Now we need to find the second part of the OLS estimator:
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X ′Y =

[
D′

1Y

D′
2Y

]

=

[∑n
i=1 yi1(d1,i = 1)∑n
i=1 yi1(d2,i = 1)

]

Combining the two pieces together, we get:

β̂OLS =

[
1
n1

0

0 1
n2

][∑n
i=1 yi1(d1,i = 1)∑n
i=1 yi1(d2,i = 1)

]

=

[
1
n1

∑n
i=1 yi1(d1,i = 1)

1
n2

∑n
i=1 yi1(d2,i = 1)

]

=

[
Ȳ1

Ȳ2

]

4.4.2 Part b

The first transformation demeans y so that y∗ has a sample mean of zero. The second transformation
demeans X so that X∗ has a sample mean of zero. When running regressions with these variables, the
β coefficients are now deviations from the mean of the data.

4.4.3 Part c

Let’s start from the second OLS regression. We can rewrite this equation as

Y = X1β̂1 +X2β̂2 + ê

X1 =
[
D1 D2

]
β̂1 =

[
α̂1

α̂2

]
X2 = X

β̂2 = β̂

Now, we don’t care about X1, so we can use the elimination matrix to simplify the problem. Define
M1 ≡ I −X ′

1(X
′
1X1)

−1X1. We can now write β̂2 as:

β̂2 = ((M1X)′M1X)
−1

(M1X)′M1Y

Okay, let’s look at this equation piece-by-piece. First, we look at M1Y :



36 CHAPTER 4. APPLYING OLS FUNDAMENTALS

M1Y =
(
I −X ′

1(X
′
1X1)

−1X1

)
Y

= Y −X ′
1(X

′
1X1)

−1X1Y

= Y −X ′
1

[
Ȳ1

Ȳ2

]
= Y −D1Ȳ1 −D2Ȳ2

= Y ∗

Now we can look at M1X:

M1X =
(
I −X ′

1(X
′
1X1)

−1X1

)
X

= X −X ′
1(X

′
1X1)

−1X1X

= X −X ′
1

[
1
n1

0

0 1
n2

][∑n
i=1 xi1(d1,i = 1)∑n
i=1 xi1(d2,i = 1)

]

= X −X ′
1

[
x̄′
1

x̄′
2

]
= X −D1x̄

′
1 −D2x̄

′
2

= X∗

Now we have all the pieces we need to find β̂2:

β̂2 = ((M1X)′M1X)
−1

(M1X)′M1Y

= ((X∗)′X∗)
−1

((X∗)′Y ∗)

Turning to the first OLS regression, we apply our normal formula for the OLS estimator:

β̃ = ((X∗)′X∗)
−1

((X∗)′Y ∗)

which is the same estimator we derived from the second OLS regression. Therefore, the two regressions
deliver the same results for the target β’s.



Chapter 5

More Regression

5.1 Practice Problem: Hansen 3.13

Let D1 and D2 be vectors of ones and zeroes, with the ith element of D1 equaling one if that observation
is male and zero if that observation is female (D2 being the opposite). Then:

(a) In the OLS regression

Y = D1γ̂1 +D2γ̂2 + µ̂

show that γ̂1 is the sample mean of the dependent variable among men in the sample
and that γ̂2 is the sample mean among women.

(b) Let Xn×k be an additional matrix of regressors. Describe in words the transformations

Y ∗ = Y −D1Ȳ1 −D2Ȳ2

X∗ = X −D1X̄
′
1 −D2X̄

′
2

Where X̄1 and X̄2 are the k×1 means of the regressors for men and women, respectively.

(c) Compare β̃ from the OLS regression

Y ∗ = X∗β̃ + ẽ

with the β̂ from the OLS regression

Y = D1α̂1 +D2α̂2 +Xβ̂ + ê

5.1.1 Part a

We first take the general formula for the OLS estimator:

37
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β = (X ′X)−1(X ′Y )

Looking at the OLS equation we are estimating, we see that

X =
[
D1 D2

]
Calculating X ′X then:

X ′X =

[
D′

1D1 D′
1D2

D′
2D1 D′

2D2

]

=

[
n1 0

0 n2

]

We can then invert this by using properties of a diagonal block matrix:

(X ′X)−1 =

[
1
n1

0

0 1
n2

]

Now we need to find the second part of the OLS estimator:

X ′Y =

[
D′

1Y

D′
2Y

]

=

[∑n
i=1 yi1(d1,i = 1)∑n
i=1 yi1(d2,i = 1)

]

Combining the two pieces together, we get:

β̂OLS =

[
1
n1

0

0 1
n2

][∑n
i=1 yi1(d1,i = 1)∑n
i=1 yi1(d2,i = 1)

]

=

[
1
n1

∑n
i=1 yi1(d1,i = 1)

1
n2

∑n
i=1 yi1(d2,i = 1)

]

=

[
Ȳ1

Ȳ2

]

5.1.2 Part b

The first transformation demeans y so that y∗ has a sample mean of zero. The second transformation
demeans X so that X∗ has a sample mean of zero. When running regressions with these variables, the
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β coefficients are now deviations from the mean of the data.

5.1.3 Part c

Let’s start from the second OLS regression. We can rewrite this equation as

Y = X1β̂1 +X2β̂2 + ê

X1 =
[
D1 D2

]
β̂1 =

[
α̂1

α̂2

]
X2 = X

β̂2 = β̂

Now, we don’t care about X1, so we can use the elimination matrix to simplify the problem. Define
M1 ≡ I −X ′

1(X
′
1X1)

−1X1. We can now write β̂2 as:

β̂2 = ((M1X)′M1X)
−1

(M1X)′M1Y

Okay, let’s look at this equation piece-by-piece. First, we look at M1Y :

M1Y =
(
I −X ′

1(X
′
1X1)

−1X1

)
Y

= Y −X ′
1(X

′
1X1)

−1X1Y

= Y −X ′
1

[
Ȳ1

Ȳ2

]
= Y −D1Ȳ1 −D2Ȳ2

= Y ∗

Now we can look at M1X:

M1X =
(
I −X ′

1(X
′
1X1)

−1X1

)
X

= X −X ′
1(X

′
1X1)

−1X1X

= X −X ′
1

[
1
n1

0

0 1
n2

][∑n
i=1 xi1(d1,i = 1)∑n
i=1 xi1(d2,i = 1)

]

= X −X ′
1

[
x̄′
1

x̄′
2

]
= X −D1x̄

′
1 −D2x̄

′
2

= X∗
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Now we have all the pieces we need to find β̂2:

β̂2 = ((M1X)′M1X)
−1

(M1X)′M1Y

= ((X∗)′X∗)
−1

((X∗)′Y ∗)

Turning to the first OLS regression, we apply our normal formula for the OLS estimator:

β̃ = ((X∗)′X∗)
−1

((X∗)′Y ∗)

which is the same estimator we derived from the second OLS regression. Therefore, the two regressions
deliver the same results for the target β’s.

5.2 Previous Problem: Question 2

Consider the simple linear regression model, yi = β0 + β1xi + εi. If the true value of β0 = 0, compare
the variance of β̂1 with the variance of β̃1, where

(
β̂1, β̃1

)
are the slope estimates of y on x1 in models

with and without an intercept, respectively.

5.2.1 Solution

We first derive the slope estimate β̂1:

β̂ = (x′x)
−1

(x′y)

=
1

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2

[ ∑n
i=1 x

2
i −

∑n
i=1 xi

−
∑n

i=1 xi n

][ ∑n
i=1 yi∑n

i=1 xiyi

]

=
1

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2

[∑n
i=1 x

2
i

∑n
i=1 yi −

∑n
i=1 xi

∑n
i=1 xiyi

−
∑n

i=1 xi

∑n
i=1 yi + n

∑n
i=1 xiyi

]

Let’s look at just the bottom row of the matrix:

−
n∑

i=1

xi

n∑
i=1

yi + n

n∑
i=1

xiyi = n

n∑
i=1

xiyi − n2x̄ȳ

= n

n∑
i=1

xiyi − 2n2x̄ȳ + n2x̄ȳ

= n

n∑
i=1

xiyi − n

n∑
i=1

xiȳ − n

n∑
i=1

yix̄+ n

n∑
i=1

x̄ȳ

= n

n∑
i=1

(xi − x̄)(yi − ȳ)
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The denominator out front can be equated to the sample variance:

n

n∑
i=1

(xi − x̄)2 = n

n∑
i=1

(x2
i − 2x̄xi + x̄2)

= n

(
n∑

i=1

x2
i − 2x̄

n∑
i=1

xi + nx̄2

)

= n

(
n∑

i=1

x2
i − 2nx̄2 + nx̄2

)

= n

(
n∑

i=1

x2
i − nx̄2

)

= n

n∑
i=1

x2
i −

(
n∑

i=1

xi

)2

Therefore:

β̂1 =
n
∑n

i=1(xi − x̄)(yi − ȳ)

n
∑n

i=1(xi − x̄)2
=

∑n
i=1(xi − x̄)yi∑n
i=1(xi − x̄)2

Now, let’s find β̃1:

β̃1 = (x′x)−1(x′y)

=

(
n∑

i=1

x2
i

)−1( n∑
i=1

xiyi

)

=

∑n
i=1 xiyi∑n
i=1 x

2
i

Now that we have our slope coefficients, we can compare the variances. First, let’s take the conditional
variance of β̂1:

V ar
(
β̂1

∣∣∣x) = V ar

(∑n
i=1(xi − x̄)yi∑n
i=1(xi − x̄)2

∣∣∣∣x)
=

∑n
i=1(xi − x̄)2V ar(yi|x)
(
∑n

i=1(xi − x̄)2)
2

=
σ2∑n

i=1(xi − x̄)2
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Now we can move to the variance of β̃1:

V ar
(
β̃1

∣∣∣x) = V ar

(∑n
i=1 xiyi∑n
i=1 x

2
i

∣∣∣∣x)
=

∑n
i=1 x

2
iV ar(yi|x)

(
∑n

i=1 x
2
i )

2

=
σ2∑n
i=1 x

2
i

If x̄ ̸= 0, then the denominator of the variance for β̂1 will be smaller. Therefore:

V ar
(
β̂1

∣∣∣x) ≥ V ar
(
β̃1

∣∣∣x)

5.3 Previous Problem: Question 5

Let the random variable Xn have a binomial distribution, Bin(n, p). Then E[Xn] = np and V ar(Xn) =

np(1− p).

(a) Prove that Xn/n converges to p in probability using the Chebyshev Inequality.

(b) Prove that 1−Xn/n converges to 1− p in probability.

(c) Prove that Xn/n(1 − Xn/n) converges to p(1 − p) in probability. Use the theorem that if
Xn

P−→ a, then g(Xn)
P−→ g(a).

5.3.1 Part a

First, note that E[Xn/n] = p and V ar(Xn/n) = np(1 − p)/n2. Now we can use the Chebyshev
Inequality:

P

(∣∣∣∣Xn

n
− p

∣∣∣∣ ≥ ε

)
≤ E[Xn − p]2

ε2

=
V ar(Xn/n)

ε2

=
p(1− p)

nε2

P−→ 0

Therefore, since lim
n→∞

P
(∣∣Xn

n − p
∣∣ ≥ ε

)
= 0, we know that Xn/n

P−→ p.
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5.3.2 Part b

Again, note that E[1 − Xn/n] = 1 − p and V ar(1 − Xn/n) = np(1 − p)/n2. Apply the Chebyshev
Inequality:

P

(∣∣∣∣1− Xn

n
− (1− p)

∣∣∣∣ ≥ ε

)
≤ E[1−Xn/n− (1− p)]2

ε2

=
V ar(1−Xn/n)

ε2

=
p(1− p)

nε2

P−→ 0

Therefore, since lim
n→∞

P
(∣∣1− Xn

n − (1− p)
∣∣ ≥ ε

)
= 0, we know that 1−Xn/n

P−→ 1− p.

5.3.3 Part c

Note that E[(Xn/n)
2
] = p2. Then by the weak law of large numbers:

(
Xn

n

)2
P−→ E

[(
Xn

n

)2
]
= p2

Now define g(Xn) = Xn/n− (Xn/n)
2. Then by the provided theorem:

g(Xn)
P−→ g(a)

= p− p2

5.4 Matlab Functions

In class, you were told that building a function in Matlab to calculate OLS estimates would be a good
idea for your midterm. I’m going to go through constructing a function in Matlab to make sure that
we are all on the same page.

There are two ways to create a function. First, you can include a functions section at the end of
your file. This method works fine if you are only using that function in the current file.

Secondly, you can create a new Matlab file starting with the “function” command. As long as this
file is in your directory, you can call this function in any other file. This method tends to be more
useful.

First, let’s look at the function syntax:

I declare that I am writing a function. Then, in brackets, I list the output variables I want from
the function. Note that these output variables must be named inside the function. Next, I say that
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these output function come from the function, in this case “olsreg”, consisting of the input variables
“x”, “y”, “variables”, and “newey.”

To call this function, let’s look at my Matlab file:

I first define the input variables. “newey” is defined in the second line. “y” is defined as the federal
funds rate. “x” is the matrix of right-hand side variables. “variables” is a string vector of my right-hand
side variable names.

At the end of the file, I say that I want to save the OLS coefficients as “beta”, the standard errors
as “rse”, the t-stats as “t-stat”, and the 95% confidence interval as “ci95.” I then call the function name
and put in my input variables. Now let’s look at the function file:

Right away, I use the input variables “x” and “y” to define “T”, the length of the time series, and
“k”, the number of right-hand side variables. I then calculate the ols estimator vector. I then need my
measure of precision, the standard error. Because I am dealing with time series, I include the option
to use the Newey-West variance calculation. My indicator variable, “newey”, is turned off though, so I
use robust standard errors, as seen below:



5.4. MATLAB FUNCTIONS 45

I can then calculate the standard errors. From there, I can calculate the t-statistics, p-values, and
confidence intervals.

Lastly, I build the regression table and display it, so that when the function is finished, the table
will appear in the console. You should make your own function for the exam, not copy mine. But you
can use my function as inspiration for your own function.
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Chapter 6

Algebra Review

6.1 Previous Problem: Homework 3 Question 1

Consider a simple regression model:

yi = α+ βxi + εi

where εi ∼ Exp(λ) with pdf:

f(εi|xi) =
1

λ
e−εi/λ, εi ≥ 0

Show that the OLS estimate for β is still unbiased but that α̂ is now biased.

6.1.1 Solution - Finding the Expectation

First we must find the expected value of an exponential distribution:

E[εi|xi] =

∫ ∞

0

εi
λ
e−εi/λdεi

Using integration by parts:

u = εi dv = e−εi/λdεi

du = dεi v = −λe−εi/λ

Then the integral becomes:

=
1

λ

([
−εiλe

−εi/λ
]∞
0

+ λ

∫ ∞

0

e−εi/λdεi

)

47
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To evaluate the first part, we need rearrange it into an indeterminate form:

lim
εi→∞

− εiλe
−εi/λ =

−εiλ

eεi/λ

This form is ∞/∞. We can now use L’Hopital’s rule:

lim
εi→∞

−εiλ

eεi/λ
= lim

εi→∞

−λ
1
λe

εi/λ

= 0

Going back to the expectation:

=
λ

λ

∫ ∞

0

e−εi/λdεi

= −λe−εi/λ
]∞
0

= λ

6.1.2 Solution: Evaluating the Bias

We start with the slope coefficient that we derived last week in recitation:

β̂ =

∑n
i=1(xi − x̄)yi∑n
i=1(xi − x̄)2

=

∑n
i=1(xi − x̄)(α+ βxi + εi)∑n

i=1(xi − x̄)2

=

∑n
i=1(xi − x̄)α+

∑
(xi − x̄)βxi +

∑
(xi − x̄)εi∑n

i=1(xi − x̄)2

=
(nx̄− nx̄)α+

∑
(x2

i − xix̄)β +
∑

(xi − x̄)εi∑n
i=1(xi − x̄)2

=

∑
(x2

i − nx̄2)β +
∑

(xi − x̄)εi∑n
i=1(xi − x̄)2

=

∑
(xi − x̄)2β +

∑
(xi − x̄)εi∑n

i=1(xi − x̄)2

= β +

∑
(xi − x̄)εi∑n

i=1(xi − x̄)2

Now take the expectation:

E
[
β̂
]
= β + E

[∑n
i=1(xi − x̄)εi∑n
i=1(xi − x̄)2

]
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= β + Ex

[∑n
i=1(xi − x̄)E[εi|x]∑n

i=1(xi − x̄)2

]
= β + Ex

[∑n
i=1(xi − x̄)λ∑n
i=1(xi − x̄)2

]
= β

So the slope coefficient is still unbiased. Now we look at the intercept term. As a refresher, let’s derive
it from first principles. We want to minimize the sum of squared residuals:

min
{α̂}

n∑
i=1

ε̂i =

n∑
i=1

(
yi − α̂− β̂xi

)2
∂SSR

∂α̂
= −2

n∑
i=1

(yi − α̂− β̂xi) = 0

nȳ − nα̂− β̂nx̄ = 0

α̂ = ȳ − β̂x̄

Now take the expectation:

E [α̂] = E[ȳ]− E
[
β̂x̄
]

=
1

n

n∑
i=1

E[α+ βxi + εi]−
1

n
E

[
β̂

n∑
i=1

xi

]

= α+ βE[xi] + Ex [εi|x]−
1

n
E

[∑n
i=1(xi − x̄)yi∑n
i=1(xi − x̄)2

n∑
i=1

xi

]

= α+ βE[xi] + λ− 1

n
E

[∑n
i=1(xi − x̄)(α+ βxi + εi)∑n

i=1(xi − x̄)2

n∑
i=1

xi

]

= α+ βE[xi] + λ− 1

n
E

[
β

n∑
i=1

xi +

∑n
i=1(xi − x̄)εi∑n
i=1(xi − x̄)2

n∑
i=1

xi

]

= α+ βE[xi] + λ− 1

n
Ex

[
β

n∑
i=1

xi +

∑n
i=1(xi − x̄)E[εi|x]∑n

i=1(xi − x̄)2

n∑
i=1

xi

]

= α+ βE[xi] + λ− 1

n
Ex

[
β

n∑
i=1

xi +

∑n
i=1(xi − x̄)]λ∑n
i=1(xi − x̄)2

n∑
i=1

xi

]
= α+ βE[xi] + λ− βE[xi]

= α+ λ
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6.2 Previous Question: Homework 3 Question 2

Consider the simple regression model:

yi = α+ εi

We estimate α via OLS.

(a) Show that α̂ = ȳ. Also show that α̂ is consistent and asymptotically normal.

(b) Consider an alternative estimate α̃ =
∑n

i=1 wiyi, where:

wi =
i

n(n+ 1)/2
=

i∑n
i=1 i

This is a weighted sample mean of y. Prove that α̃ is consistent and obtain its asymptotic
variance. Note that

∑n
i=1 wi = 1 and

∑n
i=1 i

2 = n(n+1)(2n+1)
6 .

6.2.1 Part a

Using the OLS estimator:

α̂ = (x′x)−1(x′y)

=

(
n∑

i=1

(1)2

)−1( n∑
i=1

yi

)

=
1

n

n∑
i=1

yi

= ȳ

Now we can appeal to asymptotics:

α̂ =
1

n

n∑
i=1

yi

=
1

n

n∑
i=1

(α+ εi)

= α+
1

n

n∑
i=1

εi (1)

P−→ α+ E[εi]

= α+ Ex[E[εi|x]]

α̂
P−→ α
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So α is consistent. Going back to equation (1):

α̂ = α+
1

n

n∑
i=1

εi

√
n (α̂− α) =

1√
n

n∑
i=1

εi

√
n (α̂− α)

d−→ N
(
0, σ2

)

6.2.2 Part b

Let’s simplify α̃:

α̃ =

n∑
i=1

wiyi

=

n∑
i=1

wi(α+ εi)

= α+

n∑
i=1

wiεi

Now we go the Chebyshev inequality:

P (|α̃− α| ≥ χ) ≤
E
[
(α̃− α)2

]
χ2

=
E
[
α̃2 − 2αα̃+ α2

]
χ2

=
E
[
α2 + 2α

∑n
i=1 wiεi + (

∑n
i=1 wiεi)

2 − 2α2 − 2α
∑n

i=1 wiεi + α2
]

χ2

=
E
[
(
∑n

i=1 wiεi)
2
]

χ2

Here, we note that:

E

[
n∑

i=1

wiεi

]
= Ex

[
n∑

i=1

wiE[εi|x]

]
= 0

So E
[
(
∑n

i=1 wiεi)
2
]
= V ar (

∑n
i=1 wiεi). Continuing on:

E
[
(
∑n

i=1 wiεi)
2
]

χ2
=

V ar (
∑n

i=1 wiεi)

χ2
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=

∑n
i=1 w

2
i V ar(εi)

χ2

=
σ2

χ2

n∑
i=1

i2

(n(n+ 1)/2)
2

=
σ2

χ2

n(n+ 1)(2n+ 1)/6

n2(n+ 1)2/4

=
σ2

χ2

2n2 + 3n+ 1

n3 + 2n2 + n
· 4
6

(2)

Taking n to infinity will generate an ∞/∞ form. Using L’Hopital’s rule:

lim
n→∞

σ2

χ2

2n2 + 3n+ 1

n3 + 2n2 + n
· 4
6
= lim

n→∞

σ2

χ2

4n+ 3

3n2 + 4n+ 1
· 4
6

= lim
n→∞

σ2

χ2

4n+ 3

3n2 + 4n+ 1
· 4
6

= lim
n→∞

σ2

χ2

4

6n+ 4
· 4
6

= 0

Therefore, as n → ∞, P (|α̃− α| ≥ χ) ≤ 0. By definition, then, α̃
P−→ α. To find the asymptotic

variance, we simply take V ar (
√
n(α̃− α)):

V ar
(√

n(α̃− α)
)
= nV ar(α̃)

= nV ar

(
α+

n∑
i=1

wiεi

)

= nV ar

(
n∑

i=1

wiεi

)
(Use (2))

= σ2 2n
3 + 3n2 + n

n3 + 2n2 + n
· 4
6

Once again, this is in an ∞/∞ form. Applying L’Hopital’s rule:

lim
n→∞

σ2 2n
3 + 3n2 + n

n3 + 2n2 + n
· 4
6
= lim

n→∞
σ2 6n

2 + 6n+ 1

3n2 + 4n+ 1
· 4
6

= lim
n→∞

σ2 12n+ 6

6n+ 4
· 4
6

= lim
n→∞

σ2 12

6
· 4
6

=
4σ2

3
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Therefore, because α̃ is consistent, the asymptotic distribution is:

√
n(α̃− α)

d−→ N

(
0,

4σ2

3

)

6.3 Violating the Exogeneity Assumption

Take the following regression specification:

yi = x′
iβ + εi

Define xi = [1, x0, . . . , xk]
′. Suppose that E[xkε] ̸= 0. The proof for consistency of our β estimator

would therefore fail:

β̂ =

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiyi

)

= β +

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiεi

)
P−→ β + E[xix

′
i]
−1E[xiεi]

This is as far as we can go without assuming orthogonality. Now suppose that we have a variable zk

that is uncorrelated with εi such that E[zkεi] = 0. Define zi as [1, x1, . . . , xk−1, zk]
′. Go back to the

standard regression equation:

yi = x′
iβ + εi

Instead of pre-multiplying by xi, pre-multiply by zi:

ziyi = zix
′
iβ + ziεi

E[ziyi] = E[zix′
i]β + E[ziεi]

E[zix′
i]
−1E[ziyi] = β

Apply the analogy principle:

β̂ =

(
1

n

n∑
i=1

zix
′
i

)−1(
1

n

n∑
i=1

ziyi

)
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Let’s see if this estimator is consistent:

β̂ =

(
1

n

n∑
i=1

zix
′
i

)−1(
1

n

n∑
i=1

zi(x
′
iβ + εi)

)

= β +

(
1

n

n∑
i=1

zix
′
i

)−1(
1

n

n∑
i=1

ziεi

)
P−→ β + E[zix′

i]
−1E[ziεi]

= β

So the estimator is consistent. Is it biased?

E[β̂] = β + E

( 1

n

n∑
i=1

zix
′
i

)−1(
1

n

n∑
i=1

ziεi

)
= β + Ez,x

( 1

n

n∑
i=1

zix
′
i

)−1(
1

n

n∑
i=1

ziE[εi|z, x]

)
But we do not know if the inner expectation is zero. So it is safest to assume that this estimator is
biased.
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Non-Linear Least Squares

7.1 Theory

Non-linear least squares is a topic I did not cover my first year in the program, but the idea behind it
is cool. We start with the following general function:

yi = h(xi, β) + εi, E[εi|x] = 0

As in linear least squares, we want to minimize the sum of squared residuals:

min
{β}

S(β) = min
{β}

n∑
i=1

(yi − h(xi, β))
2

Taking the first order condition with respect to β yields:

−2

n∑
i=1

(yi − h(xi, β))
∂h

∂β
= 0

In ordinary least squares, we can solve this first order condition analytically. With non-linear least
squares, we usually cannot derive an analytical solution. As such, the best we can do is:

β̂NL = argmin
{β}

S (β)

By definition of the least squares estimator, β̂NL solves the first order condition. That is:

∂S
(
β̂NL

)
∂β

= 0

7.1.1 Consistency

Despite not having an analytical solution, we can show that the non-linear least squares estimator is
consistent. We need to make one more assumption: that β is identifiable. In other words, there exists

55
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only one β, denoted by β0, that minimizes the sum of squared residuals.

Now, recall the continuous mapping theorem:

Theorem 3 (Continuous Mapping Theorem). Let xn be a sequence of real-valued random vectors and
let h : Rk → Rm. Define the set of discontinuous points as:

Dh = {x ∈ X : h(·) is discontinuous at x}

Now, if P (x ∈ Dh) = 0 and:

(i) if xn
P−→ x, then h(xn)

P−→ h(x)

(ii) if xn
d−→ x, then h(xn)

d−→ h(x)

(iii) if xn
a.s.−→ x, then h(xn)

a.s.−→ h(x)

The converse of this theorem holds true when h(·) is an injective (one-to-one) function. Stated another
way:

Theorem 4 (Converse). Let h(·) be a continuous, injective function such that h(xn)
P−→ h(x). Then:

xn
P−→ x

How do we plan on applying this converse? xn in our scenario is β̂NL. We want to show that β̂NL
P−→ β.

We also have a continuous, one-to-one function in
∂S(β̂)
∂β . We already know that:

∂S
(
β̂
)

∂β
= 0

If we take the probability limit:

1

n

∂S
(
β̂
)

∂β

P−→ 0

Now we need to show that ∂S(β0)
∂β = 0 too. We begin with the sample mean of the derivative:

1

n

∂S(β0)

∂β
=

1

n

n∑
i=1

(yi − h(xi, β))
∂h(xi, β)

∂β

P−→ E
[
εi
∂h(xi, β)

∂β

]
= Ex

[
E [εi|x]

∂h(xi, β)

∂β

]
= 0
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Therefore:

1

n

∂S
(
β̂NL

)
∂β

P−→ ∂S(β0)

∂β

By the converse of the continuous mapping theorem then:

β̂NL
P−→ β0

We have proven that the non-linear least squares estimator is consistent.

7.1.2 Asymptotic Normality

Start with the first order condition:

∂S
(
β̂
)

∂β
= −2

n∑
i=1

(yi − h(xi, β))
∂h(xi, β)

∂β

Denote the right-hand side as g
(
β̂
)
. Doing a first-order Taylor approximation around the true β

delivers:

g
(
β̂
)
= g(β) +H

(
β̃
)
(β̂ − β) for β̃ ∈

(
β̂, β

)
(7.1)

Looking just at the Hessian (in red):

H
(
β̃
)
=

∂2S
(
β̃
)

∂β∂β′

= 2

n∑
i=1

∂h
(
xi, β̃

)
∂β

∂h
(
xi, β̃

)
∂β′ − 2

n∑
i=1

(yi − h(xi, β̃))
∂2h

(
xi, β̃

)
∂β∂β′

1

n
H
(
β̃
)

P−→ 2E

∂h
(
xi, β̃

)
∂β

∂h
(
xi, β̃

)
∂β′


= 2Q0

Going back to equation (1) and dividing by
√
n:

1√
n
g
(
β̂
)

︸ ︷︷ ︸
=0

=
1√
n
g(β) +

1

n
H
(
β̃
)√

n
(
β̂ − β

)
(7.2)
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Now let’s look at the gradient (in blue):

1√
n
g(β) =

−2√
n

n∑
i=1

(yi − h(xi, β))
∂h(xi, β)

∂β

=
−2√
n

n∑
i=1

εi
∂h(xi, β)

∂β

d−→ N

(
0, 4E

[
εi
∂h(xi, β)

∂β

∂h(xi, β)

∂β

′
ε′i

])
= N

(
0, 4Ex

[
∂h(xi, β)

∂β

′
E [εiε

′
i|x]

∂h(xi, β)

∂β

′])
= N

(
0, 4σ2Q0

)
Rearranging equation (2) gives:

√
n
(
β̂ − β

)
= − 1

n
H
(
β̃
)−1 1√

n
g(β)

d−→ 1

2
Q−1

0 N
(
0, 4σ2Q0

)
= N

(
0, σ2Q−1

0

)
This completes the asymptotic normality proof.

7.2 Example

Suppose we have the following regression specification:

y =
β1x

β2 + x
+ ε

We want to estimate this via non-linear least squares. To do so, we use the Newton-Raphson algorithm:

S(θ) ≈ S(θ0) + g(θ0)
′(θ − θ0) +

1

2
(θ − θ0)

′H(θ0)(θ − θ′0)

where S(θ) is the function we want to approximate and θ is the estimated parameter. θ0 is the guess
made for the value of θ at the beginning of that iteration. To update our guesses, we use the following
formula:

θi+1 = θi −H(θi)
−1g(θi)

Lastly, we stop iterating when the algorithm converges:

||θi+1 − θi|| < tol

where tol is a tolerance parameter, usually set to 10−8.
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In our problem, θ is β = [β1, β2]
′. S(θ) is the sum of squared residuals. Let’s define the constructs we

need:

ei = yi −
β1xi

β2 + xi
(Residuals)

S(β) =

n∑
i=1

e2i (SSR)

g(β) =

[
−xi

β2+xi

β1xi

(β2+xi)2

]
ei (Gradient)

H(β) ≈

[
−xi

β2+xi

β1xi

(β2+xi)2

]′ [ −xi

β2+xi

β1xi

(β2+xi)2

]
(Hessian)

To run this example, I use the following data set:1

y = [0.05, 0.127, 0.094, 0.2122, 0.2729, 0.2665, 0.3317]′

x = [0.038, 0.194, 0.425, 0.626, 1.253, 2.5, 3.74]′

Below is a screenshot of the algorithm I wrote and a graph demonstrating the non-linear regression
model. Note that before running the algorithm, I needed to set initial values for β1, iter, and diff.

1These are taken from an example found here.

https://www.uio.no/studier/emner/matnat/math/MAT3110/h19/undervisningsmateriale/lecture13.pdf
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7.3 Homework 4 F-Statistics

The F-statistic calculations in homework 4 were rough, so we’re going to go through question 1, focusing
specifically on the F-tests:

Test the null hypothesis of constant returns of scale of the Cobb-Douglas production func-
tion, H0 : β1 + β2 = 1, in three different ways: 1) t-test 2) F-test using a set of linear
restriction, 3) F-test by comparing the sum of squares of restricted and unrestricted regres-
sion. Compare these test statistics, and comment on your findings.

7.3.1 Part 1

We first need to run an OLS regression. Once we have the β coefficients and the variance-covariance
matrix, we can then run a t-test on the null hypothesis.



7.3. HOMEWORK 4 F-STATISTICS 61

Why can we run a t-test? We have one linear restriction, so the t-test squared is the F-test. Our
t-test will look like:

t =
β1 + β2 − 1√

V ar(β1) + V ar(β2) + 2Cov(β1, β2)

= −0.3402

F = 0.1158

The other two ways of calculating the F-stat should deliver the same value.

7.3.2 Part 2

The next F-test is done via linear restriction. We are setting β1 + β2 = 1, so the restriction matrix
will look like:

R =
[
0 1 1

]
with a value, q, of 1. We now follow the formula:

F =

(
Rβ̂ − q

)′ (
R(x′x)−1R′)−1

(
Rβ̂ − q

)
s2r

=
(
β̂1 + β̂2 − 1

)′ (
Rs2(x′x)−1R′)−1

(
β̂1 + β̂2 − 1

)
=
(
β̂1 + β̂2 − 1

)′ (
R V ar

(
β̂
)
R′
)−1 (

β̂1 + β̂2 − 1
)

= 0.1158

This statistic matches the one from Part 1.

7.3.3 Part 3

Now we want to run a restricted regression and obtain the sum of squared residuals. We can rewrite
the restriction as:

β2 = 1− β1
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Sub this into the regression specification:

ln(Y ) = β0 + β1ln(K) + β2ln(L) + ε

ln(Y ) = β0 + β1ln(K) + (1− β1)ln(L) + ε

ln(Y )− ln(L) = β0 + β1(ln(K)− ln(L)) + ε

y∗ = β0 + β1ln(K
∗) + ε

Reformat the data to match this regression specification. Then calculate the SSRr:

Compare this to the SSRur from part 1:

SSRur = 0.8516

SSRr = 0.8557

Use the F-test formula for sum of squares:

F =
(SSRr − SSRur)(n− k)

SSRurr

=
(0.8557− 0.8516)(27− 3)

0.8516

= 0.1158

Note that k is the total number of regressors (3, as we have the constant, ln(K), and ln(L)).
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Midterm Review

8.1 Frisch-Waugh-Lovell Theorem

Theorem 5 (Frisch-Waugh-Lovell). Let the regression model be as follows:

y = x1β1 + x2β2 + ε

Then the estimate for β2 will be the same as the estimate from the following model:

M1y = M1x2β2 +M1u (1)

This yields a coefficient estimate of:

β̂2 = (x′
2M1x2)

−1(x′
2M1y)

We can write the theorem in another, equivalent way. First, start from equation (1). Note that
M1y is the part of y not explained by x1. Therefore, M1y represents the residuals from the following
regression:

y = βx1 + ε1

Call those residuals ε̂1. Then look at M1x2. This represents the residuals of the following regression:

x2 = πx1 + u1

Call those residuals x̃2. Then the estimate for β̂2 becomes:

β̂2 = (x̃′
2x̃2)

−1(x̃′
2ε̂1)

63



64 CHAPTER 8. MIDTERM REVIEW

This is just the slope coefficient from the following regression:

ε̂1 = β2x̃2 + ν

8.1.1 When to use this?

We use the FWL theorem when we can partition the regression. For example, take the following
specification:

y = α0 + α1z1 + α2z2 + α3z3 + α4z4 + ε

Suppose we are only interested in α1. Define x1i =
[
1 z2i z3i z4i

]′
and β1 =

[
α0 α2 α3 α4

]′
. Then define x2i = z′1i and β2 = α1. This rewrites the regression as:

y = x1β1 + x2β2 + ε

Back in the early days of computing, computational power was limited. To save time, researchers
would use the FWL theorem to find only the coefficient in which they were interested. Today, we use
it as a regression exercise mostly. The theorem is nice for some proofs.

8.1.2 Homework 1, Question 4

Consider the following demand equation system:

Ed = αd + βdY + γddPd + γdnPn + γdsPs + εd

En = αn + βnY + γndPd + γnnPn + γnsPs + εn

Es = αs + βsY + γsdPd + γsnPn + γssPs + εs

As defined, Y = Ed + En + Es. Prove that βd + βn + βs = 1.

8.1.3 Solution

Define x as x =
[
1 Pd Pn Ps Y

]
. Then the OLS estimate for each regression is:

β̂d = (x′x)−1(x′Ed)

β̂n = (x′x)−1(x′En)

β̂s = (x′x)−1(x′Es)

Sum these three together:

β̂d + β̂n + β̂s = (x′x)−1(x′Y ) (2)
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Now partition x into x1 =
[
1 Pd Pn Ps

]
and x2 = Y . Then we obtain equation (2) from the

following regression:

Y = x1β1 + x2β2 + ε

Using the FWL theorem:

β̂2 = (x′
2M1x2)

−1(x′
2M1Y )

= (x′
2M1x2)

−1(x′
2M1x2)

= 1

This proves our claim.

8.2 Wald Test

The Wald test allows us to test restrictions on parameters. In class, you saw the linear restriction
Wald test. It can be generalized to non-linear restrictions, but let’s stick with the basic test for today.
We have the following regression:

y = x1β1 + x2β2 + x3β3 + x4β4 + ε

with the following hypotheses:

H0 : β1 = β2 and β3 = β4

The Wald test formula is as follows:

W = (Rβ − q)
′
[
R V ar

(
β̂
)
R′
]−1

(Rβ − q)

For statistical testing, we need to take the asymptotic distribution. Therefore, the Wald test becomes:

W
d−→ (Rβ − q)

′
[
R Avar

(
β̂
)
R′
]−1

(Rβ − q)

= χ2
r

What’s the intuition behind the Wald test? We are measuring the distance from our hypothesized
values given the coefficients we estimated from the data. Now, let’s construct the R matrix:

R =

[
1 −1 0 0

0 0 1 −1

]
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When we multiply R against the β vector:

Rβ =

[
1 −1 0 0

0 0 1 −1

]
β1

β2

β3

β4


=

[
β1 − β2

β3 − β4

]

Now, what is q? q will be the value we hypothesize for each restriction. Then:

q =

[
0

0

]

Now, what about the asymptotic variance term? Assuming homoskedasticity in the error term, we
know the asymptotic variance of β̂:

Avar
(
β̂
)
= σ2E[x′x]−1

Estimate this using the analogy principle:

Âvar
(
β̂
)
= ŝ2

(
1

n

n∑
i=1

xix
′
i

)−1

We have all the pieces for the Wald test now. Just plug them into the formula:

W =
(
Rβ̂ − q

)′ [
R Âvar

(
β̂
)
R′
]−1 (

Rβ̂ − q
)

In our example, we compare the resulting statistic to the critical values of a χ2 distribution with r = 2

degrees of freedom (as we have two restrictions).

8.3 Lagrange Multiplier Test

To solidify intuition, let’s look at the set-up of the Lagrangian:

L = S(β) + (R(β)− q)
′
λ

where λ is the Lagrange multiplier and S(β) is the sum of squared residuals (for least squares regres-
sions). By solving the first-order conditions for λ and finding its asymptotic distribution, we get a
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finite estimate of:

LM =
∂S
(
β̂r

)
∂β′

 1

n

∂S
(
β̂r

)
∂β

∂S
(
β̂r

)
∂β′

−1

∂S
(
β̂r

)
∂β

d−→ χ2
r

In our case, with the generalized version of least squares (y = h(x, β)):

∂S
(
β̂r

)
∂β

= −2

n∑
i=1

ε̂ri
∂h(xi, β)

∂β

Define x0 as ∂h(xi,β)
∂β . Then we can rewrite the statistic as:

LM =
nε̂′rx

0
r

((
x0
r

)′
x0
r

)−1 (
x0
r

)′
ε̂r

ε̂′r ε̂r

Note the r subscripts and superscripts. All of these objects are evaluated using the restricted regression.
In addition, an important assumption working behind the scenes here: that β̂r must be consistent. If
it is not consistent, the derivation of the asymptotic distribution for the Lagrange multiplier fails.

8.4 Chow Test

The Chow test test whether coefficients in two regressions, notably on different data sets, are equal.
Most often, we use this in time series and on the constant or time trend variable to test for structural
breaks.

8.4.1 Homework 5, Question 3

Consider a regression model:

yi = β0 + β1xi1 + β2xi2 + · · ·+ β9xi9 + εi

for each year 2004-2010. Regressions for each year and the pooled model produce the following statistics:

(a) Write the regression model to produce the sum of squared residuals for a pooled regression for
2004-2010.

(b) Test the hypothesis that the slope parameters are equal for all years.
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8.4.2 Solution

For part (a):



y2004

y2005

y2006

y2007

y2008

y2009

y2010


570×1

=



i2004 0 0 0 0 0 0 x2004

0 i2005 0 0 0 0 0 x2005

0 0 i2006 0 0 0 0 x2006

0 0 0 i2007 0 0 0 x2007

0 0 0 0 i2008 0 0 x2008

0 0 0 0 0 i2009 0 x2009

0 0 0 0 0 0 i2010 x2010


570×16



β2004
0

β2005
0

β2006
0

β2007
0

β2008
0

β2009
0

β2010
0

β∼0


16×1

with the error term at the end. For part (b), redefine xt to include the constant. Then:

y2004

y2005

y2006

y2007

y2008

y2009

y2010


570×1

=



x2004 0 0 0 0 0 0

0 x2005 0 0 0 0 0

0 0 x2006 0 0 0 0

0 0 0 x2007 0 0 0

0 0 0 0 x2008 0 0

0 0 0 0 0 x2009 0

0 0 0 0 0 0 x2010


570×70



β2004

β2005

β2006

β2007

β2008

β2009

β2010


70×1

The Chow test is therefore:

F =
(570− 7 · 10)

(
ε̂′pε̂p −

∑2010
t=2004 ε̂

′
tε̂t

)
(9 · 6)

(∑2010
t=2004 ε̂

′
tε̂t

)
We compare this statistic to the critical value from the F distribution with degrees of freedom equal
to the number of restrictions (54) and free observations (500).

8.5 Strict vs. Weak Exogeneity

Let’s remind ourselves what both strict and weak exogeneity are:

E[εi|xi] = 0 (Weak Exogeneity)

E[εi|x] = 0 (Strong Exogeneity)

We have used strong exogeneity to prove properties of OLS. Could we use weak exogeneity?

The answer is yes, at least for our purposes. Because of our assumption that the observations are
independently distributed, εi is independent of εj and xi is independent of xj , for j ̸= i. Therefore,
E[εi|x] = E[εi|xi].
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This distinction between exogeneities becomes significant when the independence assumption might
fail. Some examples include:

• Geographic correlation

• Time series autocorrelation

• Intra-household data
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Chapter 9

Maximum Likelihood Estimation

9.1 Maximum Likelihood Theory

9.1.1 Basics of MLE

The Maximum Likelihood Estimator seeks to estimate a parameter that maximizes the likelihood
function. The likelihood function describes the probability of observing the data that we’ve collected
with parameters as the arguments. Of course, the underlying functions and therefore parameters in
use are chosen by the modeller. The likelihood function is given as:

Ln(θ|Y ) =

n∏
i=1

f(yi|θ)

where f(yi|θ) is the underlying DGP of the data.

To make analysis easier, we often take the natural log of the likelihood function. Note that because
natural log is a monotonically increasing function, the argmax of the log transformation is the same
as the argmax of the original likelihood function.

The log-likelihood function is:

ℓn(θ) =

n∑
i=1

ln (f(yi|θ))

Remember that these functions are functions of θ and we keep y fixed.

To estimate θ, we find the score vector. The score vector is defined as:

sn(θ) =
∂ℓn(θ)

∂θ

Note that if θ is k × 1, then sn(θ) is also k × 1.

If the log-likelihood function is differentiable over θ, then we can set the score vector equal to zero
and solve for θ̂. Recall from your microeconomics class that this FOC is necessary and not sufficient
for determining whether we are at a maximum. As such, we should check SOSCs

(
∂2ℓn(θ)
∂θ∂θ′ < 0

)
just

71
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to be sure.

9.1.2 Kullback-Leibler Information Criterion

The Kullback-Leibler Information Criterion is defined as follows:

KL (p||q) = Ep

[
ln

(
p(y)

q(y)

)]
=

∫ ∞

−∞
ln

(
p(y)

q(y)

)
dP (y)

The KLIC measures the ability of the likelihood ratio to distinguish between two distributions.

If you know anything about information theory, then the KLIC probably looks familiar. Entropy
is defined as:

H(p) = −E[ln(p)]

and defines the degree of uncertainty in a distribution.1

An important property of the KLIC, stated in the Gibbs Inequality theorem and derived from
Jensen’s Inequality, is that for any two distributions p and q, KL (p||q) ≥ 0, with equality holding only
if p = q almost everywhere.2

Proof. Note that ln is a concave function. Then:

−Ep

[
ln

(
p

q

)]
=

n∑
i=1

pi ln

(
qi
pi

)

≤ ln

n∑
i=1

pi
qi
pi

= ln

n∑
i=1

qi

≤ 0

Ep

[
ln

(
p

q

)]
≥ 0

KL (p||q) ≥ 0

This proves that the KLIC must be weakly positive. Equality trivially holds when p = q.

1The two are related as follows: H(p) = KL (p||u) + C, where u is the uniform distribution and C is some constant.
2“Almost everywhere” allows p ̸= q at a nullity point.
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9.1.3 Consistency

Take the estimated log of the likelihood function of some value θ over the likelihood function of the
true, maximizing value θ0:

1

n
ln

(
L(θ)

L(θ0)

)
=

1

n

n∑
i=1

ln

(
Li(θ)

Li(θ0)

)

By the weak law of large numbers, we know that:

1

n

n∑
i=1

ln

(
Li(θ)

Li(θ0)

)
P−→ Eθ0

[
ln

(
Li(θ)

Li(θ0)

)]
= −KL (L(θ0)||L(θ))

≤ 0

By identifiability (that there is only one θ0), θ ̸= θ0. Define θ̂n as the argmax of the likelihood function.
Then:

P
(
θ̂n ̸= θ0

)
= P

(
max
{θ ̸=θ0}

1

n

n∑
i=1

ln

(
L(θ0)

L(θ)

)
> 0

)

≤
∑
θ ̸=θ0

P

(
1

n

n∑
i=1

ln

(
L(θ0)

L(θ)

))
−→0

Therefore, since there does not exist a θ̂n that maximizes the function greater than θ0 as n → ∞,
θ̂n

P−→ θ0

9.1.4 Fisher Information Matrix

The Fisher information matrix conveys how much information the data Y carries about the unknown
parameter θ. It is given by:

Iθ,n = V ar

(
∂ℓn(θ)

∂θ

)
= E

[
∂ℓn(θ)

∂θ

∂ℓn(θ)

∂θ′

]
Note that if our model is regular (see slide 23 of Topic 7) and correctly specified (see slide 6 of Topic
7), then the Fisher information matrix equals the expected Hessian:

Iθ,n = Hθ,n

E
[
∂ℓn(θ)

∂θ

∂ℓn(θ)

∂θ′

]
= E

[
−∂2ℓn(θ)

∂θ∂θ′

]
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It is useful to remember that the asymptotic distribution of our MLE estimators is:

√
n(θ̂n − θ)

d−→ N
(
0, I−1

θ,1

)
as long as assumptions 1-11 on slide 54 of Topic 7 hold.

If the model is mis-specified, then the asymptotic distribution is:

√
n(θ̂n − θ)

d−→ N
(
0,H−1

θ,1Iθ,1H
−1
θ,1

)

9.1.5 Cramér-Rao Lower Bound

If a model is regular, parametric, and correctly specified with an interior solution for θ that is unbiased,
then the lowest possible variance is the Cramér-Rao Lower Bound. That is:

V ar(θ̂n) ≥ (nIθ,1)−1

Note that if our data is i.i.d., then nIθ,1 = Iθ,n.

9.2 Practice Problem 1: Hansen 10.4

Let X be distributed Cauchy with density f(x) = 1
π(1+(x−θ)2) for x ∈ R.

(a) Find the log-likelihood function of ℓn(θ).

(b) Find the first-order condition for the MLE θ̂ for θ. You will not be able to solve for θ̂.

9.2.1 Part a

We begin by finding the likelihood function. We will then take the natural log of that function. Using
the definition of the likelihood function:

L(θ|x) =
n∏

i=1

1

π(1 + (xi − θ)2)

ℓn(θ) =

n∑
i=1

−ln
(
π(1 + (xi − θ)2

)
=

n∑
i=1

−ln(π)− ln
(
1 + (xi − θ)2

)
= −nln(π)−

n∑
i=1

ln
(
1 + (xi − θ)2

)
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9.2.2 Part b

Now that we have the log-likelihood function, we can find the score vector and set that equal to zero:

∂ℓn(θ)

∂θ
=

∂

∂θ

[
−nln(π)−

n∑
i=1

ln
(
1 + (xi − θ)2

)]

=

n∑
i=1

2(xi − θ)

1 + (xi − θ)2

= 0

Usually we’d like to solve for θ̂, but note that here we cannot. We need a numerical solver to find the
optimal estimator. So our work, analytically at least, is done.

9.3 Practice Problem 2: Hansen 10.7

Take the Pareto model f(x) = αx−1−α, x ≥ 1. Calculate the information for α using the second
derivative.

9.3.1 Solution

We start with the likelihood function. We will then take the natural log to find the log-likelihood
function.

L(α|x) =
n∏

i=1

(αx−1−α
i )

ℓn(α) =

n∑
i=1

ln(αx−1−α
i )

=

n∑
i=1

ln(α)− (1 + α)ln(xi)

= nln(α)−
n∑

i=1

(1 + α)ln(xi)

Now that we have the log-likelihood we can find the score vector:

∂ℓn(α)

∂α
=

∂

∂α

[
nln(α)−

n∑
i=1

(1 + α)ln(xi)

]

=
n

α
−

n∑
i=1

ln(xi)
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The problem tells us to use the second derivative, so taking the derivative with respect to α again:

∂2ℓn(α)

∂α2
=

∂

∂α

[
n

α
−

n∑
i=1

ln(xi)

]
= − n

α2

Now that we have the second derivative, we look at the formula for the expected Hessian:

Hθ,n = E
[
−∂2ℓn(α)

∂α2

]
= E

[ n

α2

]
=

n

α2

Assuming the information matrix equality holds, then:

Iθ,n =
n

α2

9.4 Practice Problem 3

Suppose we have random variable yi ∼ N
(
α+ βxi, σ

2
)
. The probability density function, conditional

on xi, is thus:

f(yi|xi) =
1√
2πσ2

e−
1

2σ2 (yi−α−βxi)
2

In this problem, we want to:

(a) Find the log-likelihood function.

(b) Define the score vector and solve the first order conditions.

(c) Derive the observed Hessian.

(d) Derive the Fisher information matrix.

9.4.1 Conditional Log-Likelihood

Start first with the likelihood, then take the log:

Ln(θ) =

n∏
i=1

f(yi|xi)

ℓn(θ) =

n∑
i=1

ln

(
1√
2πσ2

e−
1

2σ2 (yi−α−βxi)
2

)
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= −n

2
ln(2πσ2)− 1

2σ2

n∑
i=1

(yi − α− βxi)
2

9.4.2 Score Vector

Next we take the derivative of the log-likelihood with respect to each of our three parameters:

∂ℓn(θ)

∂α
=

1

σ2

n∑
i=1

(yi − α− βxi)

∂ℓn(θ)

∂β
=

1

σ2

n∑
i=1

(yi − α− βxi)xi

∂ℓn(θ)

∂σ2
= − n

2σ2
+

1

2σ4

n∑
i=1

(yi − α− βxi)
2

Let’s simplify one equation at a time, starting with α:

1

σ2

n∑
i=1

(yi − α− βxi) =
1

σ2

[
n∑

i=1

yi − nα− β

n∑
i=1

xi

]

=
1

σ2
[nȳ − nα− βnx̄]

Recall that we set these first-order conditions equal to zero, so we can multiply by σ2 and add nα to
get:

nα = nȳ − nβx̄

α̂ = ȳ − βx̄

Before we can advance further, we must solve for β̂:

0 =
1

σ2

n∑
i=1

(yi − α− βxi)xi

=
1

σ2

n∑
i=1

xiyi − αxi − βx2
i

=
1

σ2
[nxy − nαx̄− nβxx]

β̂ =
xy − αx̄

xx
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Now we can plug β̂ into α̂:

α̂ = ȳ −
(
xy − αx̄

xx

)
x̄

α̂

(
1− x̄2

xx

)
= ȳ − x̄xy

xx

α̂
(
xx− x̄2

)
= xxȳ − xyx̄

α̂ =
xxȳ − xyx̄

xx− x̄2

We can then plug α̂ back into β̂:

β̂ =
xy − xxȳ−xyx̄

xx−x̄2 x̄

xx

=

xy(xx−x̄2)−xxȳx̄+xyx̄2

xx−x̄2

xx

=
xyxx− xxx̄ȳ − x̄2xy + x̄2xy

xx(xx− x̄2)

=
xy − x̄ȳ

xx− x̄2

Now we can solve for σ2:

0 = − n

2σ2
+

1

2σ4

n∑
i=1

(yi − α− βxi)
2

n

2σ2
=

1

2σ4

n∑
i=1

(yi − α− βxi)
2

σ̂2 =
1

n

n∑
i=1

(yi − α̂− β̂xi)
2

9.4.3 Deriving the Observed Hessian

The observed Hessian Ho
θ,n is defined as:

Ho
θ,n =

[
∂2ℓn(θ)

∂θ∂θ′

]
Let’s go one at a time:

∂2ℓn(θ)

∂α2
= − n

σ2

∂2ℓn(θ)

∂α∂β
= − 1

σ2

n∑
i=1

xi
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∂2ℓn(θ)

∂α∂σ2
= − 1

σ4

n∑
i=1

(yi − α− βxi)

∂2ℓn(θ)

∂β2
= − 1

σ2

n∑
i=1

x2
i

∂2ℓn(θ)

∂β∂σ2
= − 1

σ4

n∑
i=1

(yi − α− βxi)xi

∂2ℓn(θ)

(∂σ2)
2 =

n

2σ4
− 1

σ6

n∑
i=1

(yi − α− βxi)
2

9.4.4 Information Matrix

If we assume the information matrix equality holds, then the expectation of the negative of the observed
Hessian is the same as the information matrix. Recall that we treat xi as fixed data so that its mean
is its expectation. Let’s first take the negative expectation of the second derivatives we calculated:

E
[
−∂2ℓn(θ)

∂α2

]
=

n

σ2

E
[
−∂2ℓn(θ)

∂α∂β

]
=

n

σ2
x̄

E
[
−∂2ℓn(θ)

∂α∂σ2

]
= 0

E
[
−∂2ℓn(θ)

∂β2

]
=

n

σ2
xx

E
[
−∂2ℓn(θ)

∂β∂σ2

]
= 0

E

[
−∂2ℓn(θ)

(∂σ2)
2

]
=

n

2σ4

Note that we use both the property that the sum of the residuals is zero and that the sum of squared
residuals is equal to the variance. So the information matrix is:

Iθ,n =


n
σ2

n
σ2 x̄ 0

n
σ2 x̄

n
σ2xx 0

0 0 n
2σ4


So that was a lot of work! Know how to calculate information matrices quickly for the comprehen-

sive exam in June.

9.5 Practice Problem 4: Hansen 13.3 Extended

Consider independent and identically distributed observations y1, . . . , yn from an exponential distribu-
tion with parameter λ. We define the distribution such that E[y] = λ. We want a test for H0 : λ = 1

against H1 : λ ̸= 1. For reference, an exponential distribution has pdf: f(y) = 1
λe

− 1
λy
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(a) Develop an asymptotic t-test based on the sample mean.

(b) Derive the likelihood ratio statistic.

(c) Derive the score test.

(d) Derive the Wald test.

9.5.1 Part a

The asymptotic t-test takes the following form:

T =

√
n(θ̂ − θ)

σ

where σ is the asymptotic standard error. We know the true distribution of y, so we can use the
variance of an exponential distribution:

V AR(
√
nȳ) = nV ar(ȳ)

=
1

n

n∑
i=1

V ar(y)

= λ2

Our asymptotic t-test will look as follows:

T =

√
n(λ̂− λ0)

λ

=

√
n(E[y]− λ0)

E[y]

=

√
n(ȳ − 1)

ȳ

=

√
n(ȳ − 1)

ȳ

9.5.2 Part b

The likelihood ratio test looks as follows:

LR = 2
[
ln
(
L
(
λ̂|y
))

− ln (L (λ0|y))
]
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In our problem, our restricted estimator is λ̂r = λ0 = 1. Plugging in the log-likelihood gives:

= 2

[
n∑

i=1

− ln
(
λ̂
)
− yi

λ̂
−

(
n∑

i=1

− ln(λ0)−
yi
λ0

)]

= −2

[
−n ln

(
λ̂
)
− n

λ̂
ȳ + nȳ

]
d−→ χ2

1

9.5.3 Part c

The score test looks as follows:

Ts(y) =
1

n

∂ℓn

(
θ̂r

)
∂θ

I−1

θ̂r,1

1

n

∂ℓn

(
θ̂r

)
∂θ

First, we need to find the score:

∂ℓn (λ)

∂λ

∣∣∣∣
λ=λ0

=

n∑
i=1

− 1

λ
+

yi
λ2

∣∣∣∣∣
λ=λ0

= − n

λ0
+

n

λ2
0

ȳ

= −n+ nȳ

Now we calculate the information matrix, using the information matrix equality:

Iλ0,1 = E
[
∂2ℓn(λ)

∂λ∂λ′

]
λ=λ0

= −E
[
1

λ2
− 2

yi
λ3

]
λ=λ0

= −
[
1

λ2
− 2

λ2

]
λ=λ0

=
1

λ2

∣∣∣∣
λ=λ0

=
1

λ2
0

= 1

So the score statistic is:

Ts =
1

n
(−n+ nȳ)(1)−1(−n+ nȳ)

= n(ȳ − 1)2

d−→ χ2
1
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9.5.4 Part d

The Wald test takes the general form:

Tw(y) = n
(
R(θ̂)− q

)′(∂R(θ̂)

∂θ′
I−1

θ̂,1

∂R(θ̂)

∂θ

)−1

(R(θ̂)− q)

In our case, R(θ̂) = λ̂ and q = 1. Therefore, ∂R(θ̂)
∂θ = 1. Plugging in everything yields:

Tw = n
(
λ̂− 1

)( 1

λ̂2

)(
λ̂− 1

)

=
n
(
λ̂− 1

)2
λ̂2

=
n(ȳ − 1)2

ȳ2

This is the square of the t-test.

9.6 Practice Problem 5: Hansen 13.1 Extended

Take the Bernoulli model with probability parameter p. We want a test for H0 : p = 0.05 against
H1 : p ̸= 0.05.

(a) Develop a test based on the sample mean x̄n.

(b) Derive the likelihood ratio statistic. What is its asymptotic sampling distribution?

(c) Derive the score test. What is its asymptotic sampling distribution?

(d) Derive the Wald test. What is its asymptotic sampling distribution?

9.6.1 Part a

Because we know that the mean of a Bernoulli random variable is p, our estimator p̂ is simply x̄n. We
use a t-test for (a):

T =

√
n(x̄n − p0)

ŝ

=

√
n(x̄n − 0.05)

ŝ

Because we know the distribution of our random variable, we replace ŝ with the estimated true
variance. Bernoulli distributions have variance p(1− p), so our t-test becomes:



9.6. PRACTICE PROBLEM 5: HANSEN 13.1 EXTENDED 83

T =

√
n(x̄n − 0.05)

ŝ

=

√
n(x̄n − 0.05)√

p̂(1− p̂)

=

√
n(x̄n − 0.05)√
x̄n(1− x̄n)

9.6.2 Part b

Our p̂0 = 0.05, so using the formula for the likelihood ratio statistic:

lrn = 2

[
n∑

i=1

ln
(
p̂yi(1− p̂)1−yi

)
−

n∑
i=1

ln
(
p̂yi

0 (1− p̂0)
1−yi

)]

= 2

[
n∑

i=1

yiln(p̂) + (1− yi)ln(1− p̂)−
n∑

i=1

yiln(0.05) + (1− yi)ln(1− 0.05)

]
d−→ χ2

1

Where the one degree of freedom comes from the one restriction we impose (the null hypothesis).

9.6.3 Part c

To derive the score test, we first need to find the score vector evaluated at the restricted value:

[
∂ℓn(p)

∂p

]
p=p0

=

[
n∑

i=1

yi
p

−
n∑

i=1

1− yi
1− p

]
p=p0

=

n∑
i=1

yi
0.05

−
n∑

i=1

1− yi
1− 0.05

=
nȳn
0.05

− n− nȳn
1− 0.05

= nȳn

[
20 +

20

19

]
− 20n

19

= nȳn

[
400

19

]
− 20n

19

We now need the information matrix evaluated under the null hypothesis. Knowing that this
parametric model is correctly specified (due to us knowing the underlying distribution) and regular,
we can use the information matrix equality:
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Ip̂0,1 = E
[
−∂ℓn(p)

∂p

]
p=p0

= E
[
ȳ

p2
− ȳ

(1− p)2
+

1

(1− p)2

]
p=p0

=

[
p

p2
− p

(1− p)2
+

1

(1− p)2

]
p=p0

=

[
1

p
+

1

1− p

]
p=p0

=

[
1− p+ p

p(1− p)

]
p=p0

=

[
1

p(1− p)

]
p=p0

=
1

0.05(1− 0.05)

=
400

19

We now have all of the pieces that we need. Plugging these into the score statistic formula:

Ts =
1

n

(
nȳ

[
400

19

]
− 20n

19

)
19

400

(
nȳ

[
400

19

]
− 20n

19

)
d−→ χ2

1

9.6.4 Part d

We first need to set up our g. As I noted last week, the easiest way to do this is linearly:

g(p) = p− p0

= p− 0.05

= 0

Next we need to take the derivative of g(p) with respect to p:

∂g(p)

∂p
= 1

Taking Ip̂0,1 we estimated above, simply replace p with p̂ and we have the information matrix we
need. Plugging everything into the Wald statistic formula:
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Tw = n(p̂− 0.05)(1 · p̂(1− p̂) · 1)−1(p̂− 0.05)

=
n(p̂− 0.05)2

p̂(1− p̂)
d−→ χ2

1

Notice that because p̂ = x̄n and because g(p) is linear, our Wald statistic is simply the square of
our t-statistic.

9.7 Graphing MLE

The figure above gives an example of how to graph the likelihood and log-likelihood functions on the
same plot. If you have any questions, feel free to email me.

The figure below gives an example of how to use Matlab’s built-in numerical solver. The problem
set asks you to use the Newton-Raphson algorithm, but you can use this code to check your work.



86 CHAPTER 9. MAXIMUM LIKELIHOOD ESTIMATION



Chapter 10

Generalized Least Squares

10.1 GLS Theory

10.1.1 Purpose

Throughout this theory section, keep the classic regression equation in mind:

y = xβ + ε

Under OLS, we made three main assumptions:

1. x is full rank

2. E[ε|x] = 0

3. V ar(ε|x) = σ2I

The last assumption is called homoskedasticity - the variance of the errors does not depend on the
value of our right-hand side variables. Under GLS, we relax the assumption of homoskedasticity:

V ar(εi|xi) = σ2
i

This type of variance is called heteroskedasticity. One way to correct for heteroskedasticity is to do
GLS.
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10.1.2 Derivation

Suppose the variance of the error term takes the following form:

V ar(ε|x) = σ2Ω

= σ2


ω1 0 0

0
. . . 0

0 0 ωn



=


σ2
1 0 0

0
. . . 0

0 0 σ2
n


≡ V

Because this is a variance-covariance matrix, it must be positive definite. As such, it has an inverse,
and that inverse has a Cholesky decomposition:

V −1 = P ′P

Where P is an upper triangular matrix with real and positive diagonal entries.

Our goal in GLS is to “fix” the heteroskedasticity problem by reshaping the error’s variance to be
homoskedastic. How? Premultiply the ε by P and take the variance:

V ar(Pε) = PV ar(ε)P ′

= Pσ2ΩP ′

= σ2P (P ′P )−1P ′

= σ2PP−1P ′(P ′)−1

= σ2I

Therefore, under the transformation (premultiplication by P ), the system has homoskedastic errors.
Apply this transformation to the regression equation:

y = xβ + ε

Py = Pxβ + Pε

Now solve for β:

x′P ′Py = x′P ′Pxβ + x′P ′Pε

(x′P ′Px)−1(x′P ′Py) = β + (x′P ′Py)−1(x′P ′Pε)
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(x′P ′Px)−1(x′P ′Py) = β̂GLS(
x′Ω−1x

)−1 (
x′Ω−1y

)
= β̂GLS

10.1.3 Bias and Variance

To find the bias, we take the expected value of the estimator:

E
[
β̂GLS

∣∣∣x] = E
[
(x′Ω−1x)−1(x′Ω−1(xβ + ε))

∣∣x]
= β + (x′Ω−1x)−1

(
x′Ω−1E [ε|x]

)
= β

So GLS is unbiased under the assumption of strong exogeneity. For the variance, relabel the GLS
estimator as:

β̂GLS = (x′Ω−1x)−1(x′Ω−1y)

= (x′P ′Px)−1(x′P ′Py)

= [(x∗)′x∗]
−1

[(x∗)′y∗]

We know that under homoskedasticy, the variance of the estimator is:

V ar
(
β̂OLS

∣∣∣x) = σ2(x′x)−1

Applying this same logic to our transformed system gives the GLS variance:

V ar
(
β̂GLS

∣∣∣x) = σ2 [(x∗)′x∗]
−1

= σ2
(
x′Ω−1x

)
We have shown that the GLS estimator is unbiased. We can also note that the transformed model

is a linear OLS model, so it must also have the least variance among unbiased estimators. Therefore,
GLS is BLUE.

10.1.4 Feasible GLS

One problem with GLS is that we don’t actually observe σ2Ω. As such, we need to estimate them.
How do we do this? In two steps using weighted least squares.

First, run OLS on the model. Then get the error terms. Then estimate σ̂2 as follows:

σ̂2 =
ε̂′ε̂

n− k

We can then develop some function of these variances to form our weights (like ω̂i = σ̂2(xi)). We will
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then compose our estimated Ω as:

Ω̂ =


x1 0 0

0
. . . 0

0 0 xn


Second, calculate the GLS estimator:

β̂GLS =

(
1

n

n∑
i=1

xi(ω̂i)
−1xi

)−1(
1

n

n∑
i=1

xi(ω̂i)
−1yi

)

Once we have the GLS estimator, we can iterate through these two steps (using the GLS estimator is
step two to update σ̂2.

10.1.5 Consistency

Starting from the FGLS estimator:

β̂GLS =

(
1

n

n∑
i=1

x′
i(ω̂i)

−1xi

)−1(
1

n

n∑
i=1

x′
i(ω̂i)

−1yi

)

= β +

(
1

n

n∑
i=1

x′
i(ω̂i)

−1xi

)−1(
1

n

n∑
i=1

x′
i(ω̂i)

−1εi

)
(*)

P−→ β + E
[
x′
i(ωi)

−1xi

]−1 E
[
x′
i(ωi)

−1εi
]

= β

This proof holds as long as ω̂i is consistent for ωi.

10.1.6 Asymptotic Normality

Starting from (∗):

β̂ = β +

(
1

n

n∑
i=1

x′
i(ω̂i)

−1xi

)−1(
1

n

n∑
i=1

x′
i(ω̂i)

−1εi

)
√
n
(
β̂ − β

)
=

(
1

n

n∑
i=1

x′
i(ω̂i)

−1xi

)−1(
1√
n

n∑
i=1

x′
i(ω̂i)

−1εi

)

Brushing some technicalities on the estimation of the weights aside, we can send this to infinity:

√
n
(
β̂ − β

)
d−→ N

(
0, (x′Ω−1x)−1x′Ω−1εε′(Ω−1)′x(x′Ω−1x)−1

)
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10.2 Heteroskedasticity

10.2.1 White’s Standard Errors

We can correct for heteroskedasticity in OLS as well. Consider the OLS estimator:

β̂ = (x′x)−1(x′y)

= β + (x′x)−1(x′ε)

√
n
(
β̂ − β

)
=

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiεi

)
d−→ N

(
0, (x′x)−1x′εεx(x′x)−1

)
Because of heteroskedasticity, we cannot simplify εε′ to σ2I as before. The simplification we usually
make to σ2(x′x)−1 cannot occur. The standard errors that result from this unsimplified variance are
called White’s standard errors.

To estimate the asymptotic variance:

ÂV AR = (x′x)−1

(
n

n− k

n∑
i=1

xiε̂
′
iε̂ix

′
i

)
(x′x)−1

10.2.2 White’s Heteroskedasticity Test

Without going too much into the theory, White’s test for heteroskedasticity is calculated by finding
the R2 value of a regression of the squared OLS residuals, ε̂2, on x and the cross-products of every
variable in x. Then, using the Lagrange Multiplier test:

LM = nR2

For example, suppose x = [1 age age2]. Then the steps are:

1. Run y = xβ + ε.

2. Find ε̂.

3. Build x∗ = [x age3 age4].

4. Run ε̂2 = x∗β + ε∗.

5. Calculate the R2 from this second regression.

6. Calculate LM = nR2.

7. Compare to the asymptotic critical value from χ2
k−1, where k is the number of regressors in the

second regression.
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10.2.3 Breusch-Pagan Test

The first few steps are similar to White’s test. First, run the OLS model. Then obtain the estimated
residuals. In the Breusch-Pagan test, we then regress the square of the estimated residuals on x again.
Lastly, calculate the Lagrange Multiplier statistic.

Let’s use the example from above again. Suppose x = [1 age age2]. Then:

1. Run y = xβ + ε.

2. Find ε̂.

3. Run ε̂2 = xβ + ε∗.

4. Calculate LM = 1
2 (TSS − SSR), using values from the second regression.

5. Compare the LM statistic to the critical value from χ2
k−1, where k is the number of regressors

in the second equation.

10.3 Example

Consider the following population model: yi ∼ N (2πxi, 100) + εi, where xi
iid∼ Unif(0, 1) and εi|xi

iid∼
N(0, x2

i ).

(a) Simulate 10,000 samples with 10,000 observations each. For each sample, take the first 500,
1000, and 10,000 observations. Store the slope coefficients from OLS.

(b) Take the mean and variance of each slope coefficient.

(c) Now conduct FGLS by assigning ωi = xi. Repeat parts (a) and (b).
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We can see from the figure above that OLS converges to an estimate around 2π quickly. This result
makes sense, as if you take the probability limit of the OLS estimator, you will get 2π analytically.

FGLS, though, takes much longer to converge to 2π. Why might this be? Unlike GLS, we cannot
guarantee that FGLS will be unbiased. As such, it may take a much larger sample size for FGLS to
converge to zero. In this exercise, the variance of the FGLS estimator is also much larger.
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Chapter 11

Generalized Method of Moments

11.1 Previous Problem: PS 7, Question 2

Consider the following joint probability function of (x, y):

f (x, y|β) = 1

β + x
e−

y
β+x

(a) Write the log-likelihood function for β.

(b) Using “DataHw7.2.xlsx”, obtain the MLE for β using the Newton-Raphson algorithm.

(c) Consider joint probability function:

f (x, y|β, ρ) = (β + x)−ρ

Γ(ρ)
yρ−1e−

y
β+x

Use MLE to find β̂ and ρ̂.

(d) Test H0 : ρ = 1 using an asymptotic t-test, the log-likelihood ratio test, the Wald test, and the
score test.

11.1.1 Part a

To obtain the log-likelihood function, multiply the joint pdf together n times:

L(β) = Πn
i=1

1

β + xi
e
− yi

β+xi

Then take the natural log:

ℓn(β) =

n∑
i=1

(
− ln(β + xi)−

yi
β + xi

)
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11.1.2 Part b

To solve this in Matlab, we need to define the log-likelihood. I do so as a function handle:

I then pass the log-likelihood to the Newton-Raphson algorithm:

where the variance is calculated using the negative expected Hessian. The algorithm returns:

The estimate for β is 15.60 with a standard error of 6.79. For convenience, define:

θ̂a =
[
β̂a 1

]′

11.1.3 Part c

To obtain the log-likelihood, multiply the joint pdf together n times:

L(β, ρ) = Πn
i=1

(β + x)−ρ

Γ(ρ)
yρ−1e−

y
β+x

Then take the natural log:

ℓn(β, ρ) =

n∑
i=1

(
−ρ ln(β + xi)− ln (Γ(ρ)) + (ρ− 1) ln(yi)−

yi
β + xi

)

In Matlab, I once again define the log-likelihood function:
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where θ =
[
β ρ

]′
in the figure.

I call the Newton-Raphson algorithm to solve the MLE problem again:

getting the following results:

By not restricting ρ to 1, I find that β̂ is now -4.72 with a standard error 2.34. I also find that
ρ̂ = 3.15 with a standard error of 0.79. Going forward, let:

θ̂c =
[
β̂c ρ̂

]′
11.1.4 Part d

Here, I test the hypothesis that ρ = 1 in four ways.

t-Test

The asymptotic t-test looks as follows:

t =
θ̂ − θ0

SE(θ̂)

In my case, this looks like:

t =
ρ̂− 1

SE(ρ̂)

=
3.15− 1

0.79

≈ 2.71
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The critical value from the asymptotic t-test is 1.96. So I reject the null.

Likelihood-Ratio Test

The likelihood-ratio test looks as follows:

LR = −2
[
ℓn

(
θ̂r

)
− ℓn

(
θ̂ur

)]
In my case, this looks like:

LR = −2
[
ℓn

(
β̂a

)
− ℓn

(
θ̂c

)]
Using Matlab and plugging the estimates for β̂a and θ̂c from above into the log-likelihoods gives:

LR = −2 [−88.44 + 82.92]

≈ 11.04

The critical value for the likelihood ratio statistic is 3.84, as we have one degree of freedom. I reject
the null.

Wald Test

The Wald test looks as follows:

W =
(
R
(
θ̂ur

)
− q
)′(

r
(
θ̂ur

)
I
(
θ̂ur

)−1

r
(
θ̂ur

)′)−1 (
R
(
θ̂ur

)
− q
)

Because I assume the model is correctly specified and regular, the inverse of the information matrix is
the asymptotic variance of my unrestricted estimator. In my case, the Wald statistic therefore looks
like:

W = (ρ̂− 1)
′
([

0 1
]
V ar

(
θ̂c

) [
0 1

]′)−1

(ρ̂− 1)

= (3.15− 1)(0.63)−1(3.15− 1)

≈ 7.33

The critical value for the Wald statistic is the same as the critical value for the likelihood-ratio statistic,
as they both have the same asymptotic distributions. I reject the null.

Score Test

The score test looks as follows:

S =

∂ℓn

(
θ̂r

)
∂θ

′

I
(
θ̂r

)−1

∂ℓn

(
θ̂r

)
∂θ


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Note that the information matrix is evaluated at the restricted estimates. To do this, I must first
calculate the information matrix assuming no restrictions. Then I can plug in the restricted estimates.
In Matlab, I evaluate the Hessian using the log-likelihood function from part c and then plug in θ̂a.
This gives a score statistic of:

S =
[
0 7.91

] [124.02 −2.52

−2.52 0.08

][
0

7.91

]
≈ 5.12

Once again, the critical value is the same as the one for the likelihood-ratio statistic. I reject the null
hypothesis.

The above figure displays the code I used to generate the asymptotic test statistics.

11.2 Generalized Method of Moments Theory

Suppose we have a vector of moment conditions with length L that must be satisfied in our system
(whichever system that may be). We write these moments in such a way that:

E[m(β)] = 0
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Our goal is to find a vector of size K, β, that satisfies all the moment conditions that we have.

Identification

β is identified if ∃!β : E[q(β)] = 0. That is, we can find a solution to the moment conditions if there
exists a unique β such that the conditions are satisfied. The system of moment equations has three
levels of identification:

(1) Under-identification: L < K, meaning we have more unknowns than equations.

(2) Just-identified: L = K, meaning we have just enough information to find β.

(3) Over-identified: L > K, meaning we have more than enough information to find β.

If L = K, then we can use the regular method of moments estimation technique. Consider two
examples. First, suppose β = µy, the sample mean of scalar y. Then our moment condition is:

m(µ) = E[yi − µ] = 0

E[yi] = µ

1

n

n∑
i=1

yi = µ̂

Secondly, consider OLS:

m(β, σ2) = E

[
xε

ε2 − σ2

]
=

[
0

0

]

Solving this moment conditions will give us our OLS estimates for β and σ2.
The crucial assumption behind instrumental variables also fits into the moment conditions frame-

work, where the moment is:

m(β) = E[z′u] = 0

But what happens when L > K, or when the moment condition in the just-identified case is impossible
to solve analytically? Take 2SLS. Our moment condition here is the same as under IV:

m(β) = E[z′u] = 0

1

n

n∑
i=1

zi(yi − xiβ) = 0

(z′y)L×1 = (z′x)L×KβK×1

Now, instead of exactly identified, we are over-identified. The matrix dimensions will not work for us
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to identify β. How would we estimate this? By minimizing the sum of squares:

β̂ = argmin
b

(z′(y − xb))′z′(y − xb)

Here is where GMM comes in - we can improve the precision of this estimator by weighting observations:

β̂GMM = argmin
b

(z′(y − xb))′Wz′(y − xb)

Minimizing the Criterion Function

The criterion function, in general, looks like:

q(β) = nm̄(β)′Wm̄(β)

where W is a positive definite, symmetric, weighting matrix.

As an example, consider the 2SLS case again:

m(β) = z′(y − xβ) q(β) = n(z′(y − xβ))′W (z′(y − xβ)

Taking the FOC of q(β):

∂q(β)

∂β
= −2nx′zWz′

(
y − xβ̂

)
= 0

x′zWz′
(
y − xβ̂

)
= 0

x′zWz′y = x′zWz′xβ̂

(x′zWz′x)−1(x′zWz′y) = β̂GMM

What should W be? In this case, choose W = (z′z)−1. Then:

β̂GMM = (x′z(z′z)−1z′x)−1(x′z(z′z)−1z′y)

= (x′Pzx)
−1(x′Pzy)

= β̂2SLS

In the just-identified case where K = L:

β̂GMM = (z′x)−1(z′z)(x′z)−1(x′z)(z′z)−1(z′y)

= (z′x)−1(z′y)

= β̂IV
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GMM Properties

Usually I would include two sections on proving consistency and asymptotic normality. In this case,
however, I am already at 9 pages and you will cover this again in Marinho’s class. As such, I will
simply cite a theorem:

Theorem 6 (Chamberlain (1987)). GMM is asymptotically efficient among all
√
n-copnsistent esti-

mators if all we know is E[m(β)] = 0.

where
√
n-consistent estimator are estimators, θ̂ such that:

√
n
(
θ̂ − θ

)
=

1√
n

n∑
i=1

f(data) +R

where R converges to zero in probability.
This theorem tells us that GMM estimators are consistent and efficient. By appealing to the central

limit theorem, seeing that GMM estimators are asymptotically normal should not be too much of a
leap.



Chapter 12

Time Series

12.1 ARMA(1,1)

Consider the ARMA(1,1) model:

yt = d+ ϕyt−1 + εt + θεt−1 εt ∼ WN(0, σ2)

12.1.1 Part a

Derive the unconditional mean.

Take the expectation:

E[yt] = E[yt = d+ ϕyt−1 + εt + θεt−1]

µ = d+ ϕE[yt−1] + E[εt] + θE[εt−1]

= d+ ϕµ

This gives us:

µ =
d

1− ϕ

12.1.2 Part b

Derive the unconditional variance.

103
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Sub-in for d to demean the process:

yt = µ+ ϕ(yt−1 − µ) + εt + θεt−1

yt − µ = ϕ(yt−1 − µ) + εt + θεt−1

(yt − µ)2 = (ϕ(yt−1 − µ) + εt + θεt−1)
2

E[(yt − µ)2] = E[(ϕ(yt−1 − µ) + εt + θεt−1)
2]

γ0 = ϕ2γ0 + E[ε2t ] + θ2E[ε2t−1] + 2ϕθE[ε2t−1]

γ0 =
1 + θ2 + 2ϕθ

1− ϕ2
σ2

12.1.3 Part c

Derive the first and second-order autocovariances.

(yt − µ)(yt−1 − µ) = (ϕ(yt−1 − µ) + εt + θεt−1)(yt−1 − µ)

E[(yt − µ)(yt−1 − µ)] = ϕE[(yt−1 − µ)2] + θE[εt−1(yt−1 − µ)]

γ1 = ϕγ0 + θE[εt−1(ϕ(yt−2 − µ) + εt−1 + θεt−2)]

= ϕγ0 + θσ2

We know γ0, so we have a closed-form solution for γ1. Now for γ2:

(yt − µ)(yt−2 − µ) = (ϕ(yt−1 − µ) + εt + θεt−1)(yt−2 − µ)

E[(yt − µ)(yt−2 − µ)] = ϕE[(yt−1 − µ)(yt−2 − µ)] + θE[εt−1(yt−2 − µ)]

γ2 = ϕγ1

We know γ1, so we have solved for γ2.

12.1.4 Part d

Given the information set Ft, find the forecasts for the conditional expectations of yt+i for i ∈
{1, 2, 3, 4}.

Et[yt+1] = Et[d+ ϕyt + εt+1 + θεt]

= d+ ϕyt + θεt
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Et[yt+2] = Et[d+ ϕyt+1 + εt+2 + θεt+1]

= d+ ϕEt[yt+1]

= d+ ϕ(d+ ϕyt + θεt)

= (1 + ϕ)d+ ϕ2yt + ϕθεt

Et[yt+3] = Et[d+ ϕyt+2 + εt+3 + θεt+2]

= d+ ϕEt[yt+2]

= d+ ϕ((1 + ϕ)d+ ϕ2yt + ϕθεt)

= (1 + ϕ+ ϕ2)d+ ϕ3yt + ϕ2θεt

Et[yt+4] = Et[d+ ϕyt+3 + εt+4 + θεt+3]

= d+ ϕEt[yt+3]

= d+ ϕ((1 + ϕ+ ϕ2)d+ ϕ3yt + ϕ2θεt)

= (1 + ϕ+ ϕ2 + ϕ3)d+ ϕ4yt + ϕ3θεt

12.1.5 Part e

Derive the forecast Et[yt+h] and its limit as h → ∞.

We can see from Part d that the forecast at horizon h is:

Et[yt+h] = (1 + ϕ+ ϕ2 + ...+ ϕh−1)d+ ϕhyt + ϕh−1θεt

Take the limit:

lim
h→∞

Et[yt+h] = lim
h→∞

(1 + ϕ+ ϕ2 + ...+ ϕh−1)d+ ϕhyt + ϕh−1θεt

=
d

1− ϕ

= µ

12.1.6 Part f

Calculate the variance of the forecast for the next two time periods. Is the variance increasing or
decreasing as the horizon grows larger?
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V art(yt+1) = V ar(d+ ϕyt + εt+1 + θεt)

= V ar(εt+1)

= σ2

V art(yt+2) = V ar(d+ ϕyt+1 + εt+2 + θεt+1)

= V ar(d+ ϕ[d+ ϕyt + εt+1 + θεt] + εt+2 + θεt+1)

= V ar([ϕ+ θ]εt+1 + εt+2)

= [ϕ+ θ]2σ2 + σ2

The variance grows larger as the horizon increases.

12.2 AR(2) Process

An AR(2) process relates a random variable located in time period t to two lags of that random
variable. We usually write this as: yt = d+ ϕ1yt−1 + ϕ2yt−2 + εt where εt ∼ WN(0, σ2). Recall that
white noise implies that ϵt has no autocorrelation but does not imply that εt is not independent from
its past.

(a) Find E[yt]

(b) Find V ar(yt)

(c) Find γ0, γ1, and γ2

(d) Find the impulse responses for a shock εt for k ∈ 0, 1, 2, 3, 4

(e) Find E[yt+3|t]

12.2.1 Solution: Part a

We just take the expectation of the AR(2) equation:

E[yt] = E[d+ ϕ1yt−1 + ϕ2yt−2 + εt]

µy = d+ ϕ1E[yt−1] + ϕ2E[yt−2] + 0

µy = d+ (ϕ1 + ϕ2)µy

µy(1− ϕ1 − ϕ2) = d

µy =
d

1− ϕ1 − ϕ2
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12.2.2 Solution: Part b

Similarly, we take the variance of the AR(2) equation:

V ar(yt) = V ar(d+ ϕ1yt−1 + ϕ2yt−2 + εt)

γ0 = ϕ2
1V ar(yt−1) + ϕ2

2V ar(yt−2) + 2ϕ1ϕ2Cov(yt−1, yt−2) + σ2

γ0 = (ϕ2
1 + ϕ2

2)γ0 + 2ϕ1ϕ2γ1 + σ2

12.2.3 Solution: Part c

In class, Drew proved that the autocorrelation function for an AR(2) is given by: ρj = ϕ1ρj−1+ϕ2ρj−2.
Using this equation we can find what we need. First, let’s find γ1:

γ1 = ϕ1γ0 + ϕ2γ−1 Recall that γ−i = γi

γ1 = ϕ1γ0 + ϕ2γ1

γ1 =
ϕ1γ0
1− ϕ2

Plugging this into the equation we found for γ0 in part a:

γ0 = (ϕ2
1 + ϕ2

2)γ0 + 2ϕ1ϕ2
ϕ1γ0
1− ϕ2

+ σ2

γ0(1− ϕ2
1 − ϕ2

2 − 2ϕ1ϕ2
ϕ1

1− ϕ2
) = σ2

γ0 =
σ2

1− ϕ2
1 − ϕ2

2 − 2ϕ1ϕ2
ϕ1

1−ϕ2

Plug this into the expression for γ1:

γ1 =
ϕ1γ0
1− ϕ2

γ1 =
ϕ1

1− ϕ2

[
σ2

1− ϕ2
1 − ϕ2

2 − 2ϕ1ϕ2
ϕ1

1−ϕ2

]

Lastly, use the ACF to find γ2:

γ2 = ϕ1γ1 + ϕ2γ0

γ2 =
ϕ2
1

1− ϕ2

[
σ2

1− ϕ2
1 − ϕ2

2 − 2ϕ1ϕ2
ϕ1

1−ϕ2

]
+

ϕ2σ
2

1− ϕ2
1 − ϕ2

2 − 2ϕ1ϕ2
ϕ1

1−ϕ2
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What if we did not have the ACF provided? We could always calculate γ0, γ1, and γ2 by brute
force. First, we rewrite the AR(2):

yt = d+ ϕ1yt−1 + ϕ2yt−2 + εt

yt = µy(1− ϕ1 − ϕ2) + ϕ1yt−1 + ϕ2yt−2 + εt

(yt − µy) = ϕ1(yt−1 − µy) + ϕ2(yt−2 − µy) + εt

If we wanted to calculate the unconditional variance γ0, for example, then:

(yt − µy)
2 = [ϕ1(yt−1 − µy) + ϕ2(yt−2 − µy) + εt] (yt − µy)

E[(yt − µy)
2] = E[(ϕ1(yt−1 − µy) + ϕ2(yt−2 − µy) + εt) (yt − µy)]

= γ0

What if we wanted to calculate γ1?

(yt − µy)(yt−1 − µy) = [ϕ1(yt−1 − µy) + ϕ2(yt−2 − µy) + εt] (yt−1 − µy)

E[(yt − µy)(yt−1 − µy)] = E[(ϕ1(yt−1 − µy) + ϕ2(yt−2 − µy) + εt) (yt−1 − µy)]

= γ1

Similarly for γ2:

(yt − µy)(yt−2 − µy) = [ϕ1(yt−1 − µy) + ϕ2(yt−2 − µy) + εt] (yt−1 − µy)

E[(yt − µy)(yt−2 − µy)] = E[(ϕ1(yt−1 − µy) + ϕ2(yt−2 − µy) + εt) (yt−2 − µy)]

= γ2

12.2.4 Solution: Part d

Impulses are defined as ∂yt+k

∂εt
. Let’s find this for k = 0 first:

yt = d+ ϕ1yt−1 + ϕ2yt−2 + εt

∂yt
∂εt

= 1

Now for k = 1:
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yt+1 = d+ ϕ1yt + ϕ2yt−1 + εt+1

yt+1 = d+ ϕ1(d+ ϕ1yt−1 + ϕ2yt−2 + εt) + ϕ2yt−1 + εt+1

∂yt+1

∂εt
= ϕ1

For k = 2:

yt+2 = d+ ϕ1yt+1 + ϕ2yt + εt+2

∂yt+2

∂εt
= ϕ1 ·

∂

∂εt
yt+1 + ϕ2 ·

∂

∂εt
yt

= ϕ2
1 + ϕ2

And for k = 3:

yt+3 = d+ ϕ1yt+2 + ϕ2yt+1 + εt+3

∂yt+3

∂εt
= ϕ1 ·

∂

∂εt
yt+2 + ϕ2 ·

∂

∂εt
yt+1

= ϕ3
1 + 2ϕ1ϕ2

Finally for k = 4:

yt+4 = d+ ϕ1yt+3 + ϕ2yt+2 + εt+4

∂yt+4

∂εt
= ϕ1 ·

∂

∂εt
yt+3 + ϕ2 ·

∂

∂εt
yt+2

= ϕ4
1 + 3ϕ2

1ϕ2 + ϕ2
2

As you can see, calculating impulse responses for an AR(2) by hand is much more labor-intensive
than calculating them for an AR(1).

12.2.5 Solution: Part e

This is similar to calculating the unconditional moment. Now, though, we know all the variables up
to time t. So:
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E[yt+3|t] = E[d+ ϕ1yt+2 + ϕ2yt+1 + εt+3|t]

= d+ ϕ1E[yt+2|t] + ϕ2E[yt+1|t] + 0

= d+ ϕ1E[d+ ϕ1yt+1 + ϕ2yt + εt+2|t] + ϕ2E[d+ ϕ1yt + ϕ2yt−1 + εt+1|t]

= d+ ϕ1(d+ ϕ2yt + ϕ1E[d+ ϕ1yt + ϕ2yt−1 + εt+1|t]) + ϕ2(d+ ϕ1yt + ϕ2yt−1)

= d+ ϕ1d+ ϕ1ϕ2yt + ϕ2
1d+ ϕ3

1yt + ϕ2
1ϕ2yt−1 + ϕ2

2yt−1 + ϕ2d+ ϕ2ϕ1yt + ϕ2
2yt−1

= d(1 + ϕ1 + ϕ2
1 + ϕ2) + yt(ϕ

3
1 + 2ϕ1ϕ2) + yt−1(ϕ

2
1ϕ2 + ϕ2

2)

Notice how we treated any variable dated at time t or before as if they were constants. That’s the
key to solving conditional expectations or variances with respect to time.

12.3 Deriving the MA(∞) Form for an AR(1)

Drew went over this in class, but this is an important wrench to have in your toolbox. The MA(∞)
form splits your autoregressive process into the stationary mean and sum of impulse shocks. We start
with a basic AR(1):

yt = d+ ϕyt−1 + εt Recursively sub-in:

= d+ ϕ(d+ ϕyt−2 + εt−1) + εt

= d(1 + ϕ) + ϕ2yt−2 + ϕεt−1 + εt

= d(1 + ϕ) + ϕ2(d+ ϕyt−3 + εt−2) + ϕεt−1 + εt

= d(1 + ϕ+ ϕ2) + ϕ3yt−3 + ϕ2εt−2 + ϕεt−1 + εt

= d(1 + ϕ+ ϕ2) + ϕ3(d+ ϕyt−4 + εt−3) + ϕ2εt−2 + ϕεt−1 + εt

= d(1 + ϕ+ ϕ2 + ϕ3) + ϕ4yt−4 + ϕ3εt−3 + ϕ2εt−2 + ϕεt−1 + εt

We see a pattern emerging here. Using induction, we can write this process as:

= d

∞∑
i=1

ϕi−1 +

∞∑
j=0

ϕjεt−j

Using the fact that
∑∞

k=0 ar
k = a

1−r , and making the assumption that ϕ < 1, this becomes:

=
d

1− ϕ
+

∞∑
j=0

ϕjεt−j
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We can simplify further. Solving for the mean of an AR(1) process:

E[yt] = E[d+ ϕyt−1 + εt]

µy = d+ ϕE[yt−1] + 0

µy = d+ ϕµy

µy =
d

1− ϕ

Therefore, the MA(∞) form becomes:

yt = µy +

∞∑
j=0

ϕjεt−j

Where µy is the unconditional mean of Y and the sum contains the impulse shocks of ε.
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Chapter 13

Final Review

13.1 Asymptotic Properties of Non-Linear Least Squares

The general formula for a regression equation is:

yi = h(xi, β) + εi

where h(xi, β) is some function of our right-hand side variables. To find the least squares β:

min
β

S(β) = min
β

n∑
i=1

(yi − h(xi, β))
2

∂S(β)

∂β
= −2

n∑
i=1

(yi − h(xi, β))
∂h

∂β

We then set this equation equal to zero and solve, usually using a numerical solver like the Newton-
Raphson algorithm.

Consistency

Denote β̂NL as the non-linear least squares estimator. Then by definition:

∂S
(
β̂NL

)
∂β

= 0

Assume that there is exactly one β that satisfies this condition (that is, that β is identified). Then
we know that β̂NL is consistent if:

plim
1

n

∂S
(
β̂NL

)
∂β

= plim
1

n

∂S (β0)

∂β

113
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where β0 denotes the true β. Now, recall the continuous mapping theorem:

Theorem 7 (Continuous Mapping Theorem). Let xn be a sequence of real-valued random vectors and
let h : Rk → Rm. Define the set of discontinuous points as:

Dh = {x ∈ X : h(·) is discontinuous at x}

Now, if P (x ∈ Dh) = 0 and:

(i) if xn
P−→ x, then h(xn)

P−→ h(x)

(ii) if xn
d−→ x, then h(xn)

d−→ h(x)

(iii) if xn
a.s.−→ x, then h(xn)

a.s.−→ h(x)

The converse of this theorem holds true when h(·) is an injective (one-to-one) function. Stated another
way: [Converse] Let h(·) be a continuous, injective function such that h(xn)

P−→ h(x). Then:

xn
P−→ x

How do we plan on applying this converse? xn in our scenario is β̂NL. We want to show that

β̂NL
P−→ β. We also have a continuous, one-to-one function in

∂S(β̂NL)
∂β . We already know that:

∂S
(
β̂NL

)
∂β

= 0

If we take the probability limit:

1

n

∂S
(
β̂NL

)
∂β

P−→ 0

Now we need to show that ∂S(β0)
∂β = 0 too. We begin with the sample mean of the derivative:

1

n

∂S(β0)

∂β
=

1

n

n∑
i=1

(yi − h(xi, β))
∂h(xi, β)

∂β

P−→ E
[
εi
∂h(xi, β)

∂β

]
= Ex

[
E [εi|x]

∂h(xi, β)

∂β

]
= 0

Therefore:

plim
1

n

∂S
(
β̂NL

)
∂β

= plim
1

n

∂S(β0)

∂β
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By the converse of the continuous mapping theorem then:

β̂NL
P−→ β0

We have proven that the non-linear least squares estimator is consistent.

Asymptotic Normality

Start with the first order condition:

∂S
(
β̂NL

)
∂β

= −2

n∑
i=1

(yi − h(xi, β))
∂h(xi, β)

∂β

Denote the right-hand side as g
(
β̂
)
. Doing a first-order Taylor approximation around the true β

delivers:

g
(
β̂NL

)
= g(β) +H

(
β̃NL

)
(β̂NL − β) for β̃NL ∈

(
β̂NL, β

)
(13.1)

Looking just at the Hessian (in red):

H
(
β̃NL

)
=

∂2S
(
β̃NL

)
∂β∂β′

= 2

n∑
i=1

∂h
(
xi, β̃NL

)
∂β

∂h
(
xi, β̃NL

)
∂β′ − 2

n∑
i=1

(yi − h(xi, β̃NL))
∂2h

(
xi, β̃NL

)
∂β∂β′

1

n
H
(
β̃NL

)
P−→ 2E

∂h
(
xi, β̃NL

)
∂β

∂h
(
xi, β̃NL

)
∂β′


= 2Q0

Going back to equation (1) and dividing by
√
n:

1√
n
g
(
β̂NL

)
︸ ︷︷ ︸

=0

=
1√
n
g(β) +

1

n
H
(
β̃NL

)√
n
(
β̂NL − β

)
(13.2)

Now let’s look at the gradient (in blue):

1√
n
g(β) =

−2√
n

n∑
i=1

(yi − h(xi, β))
∂h(xi, β)

∂β

=
−2√
n

n∑
i=1

εi
∂h(xi, β)

∂β
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d−→ N

(
0, 4E

[
εi
∂h(xi, β)

∂β

∂h(xi, β)

∂β

′
ε′i

])
= N

(
0, 4Ex

[
∂h(xi, β)

∂β

′
E [εiε

′
i|x]

∂h(xi, β)

∂β

′])
= N

(
0, 4σ2Q0

)
Rearranging equation (2) gives:

√
n
(
β̂NL − β

)
= − 1

n
H
(
β̃NL

)−1 1√
n
g(β)

d−→ 1

2
Q−1

0 N
(
0, 4σ2Q0

)
= N

(
0, σ2Q−1

0

)
This completes the asymptotic normality proof.

13.2 Cochrane-Orcutt Procedure

The Cochrane-Orcutt procedure is a way to estimate AR(1) processes. In class, you generally dealt
with an AR(1) of the following form:

yt = β0 + β1xt + εt (13.3)

εt = ρεt−1 + ut (13.4)

Lag the regression equation:

yt−1 = β0 + β1xt−1 + εt−1

Now multiply by ρ:

ρyt−1 = ρβ0 + ρβ1xt−1 + ρεt−1 (13.5)

Subtract equations (5) from equation (3) to get:

yt − ρyt−1 = β0(1− ρ) + β1(xt − ρxt−1) + εt − ρεt−1

yt − ρyt−1 = β0(1− ρ) + β1(xt − ρxt−1) + ut

y∗t = β∗
0 + β1x

∗
t + ut (13.6)

Recall that ut is white noise, so it satisfies all of the classical regression assumptions. We can use OLS.
In reality, we do not know ρ. So we must estimate ρ by running OLS on equation (4). Then we

can start the Cochrane-Orcutt iteration step:

1. Estimate equation (6) via OLS to obtain β̂ and OLS residuals ε̂.

2. Estimate new ρ̂.
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3. Transform original data into y∗t and x∗
t .

4. Re-estimate β̂.

5. Repeat until β̂i converges to β̂i.

13.2.1 Prais-Winsten

Recall that the variance of the error term is (for a 3× 3 for simplicity):

V ar(ε) = σ2Ω

= σ2
u

 1 ρ ρ2

ρ 1 ρ

ρ2 ρ 1


Because Ω is a postive definite matrix (by definition of the variance-covariance matrix), it has an
inverse and Cholesky decomposition:

Ω−1 = P ′P

where The triangular matrix P takes the following form:

P =


√

1− ρ2 0 0

−ρ 1 0

0 −ρ 1


Now, premultiply y by P :

Py =


√
1− ρ2 0 0

−ρ 1 0

0 −ρ 1


y1y2
y3



y∗ =


√
1− ρ2y1

y2 − ρy1

y3 − ρy2


Then premultiply x by P :

Px =


√
1− ρ2 0 0

−ρ 1 0

0 −ρ 1


x1

x2

x3



x∗ =


√
1− ρ2x1

x2 − ρx1

x3 − ρx2


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Then run OLS on:

y∗ = x∗β + ε∗

13.3 Reverse Regression

We now have in mind the classic regression equation:

yi = α+ βxi + εi

Reverse regression is a way to solve measurement error in the right-hand side variable. Suppose xi can
be written as:

xi = x∗
i + ui

Then we can rewrite the standard regression equation as:

yi = α+ β(xi − ui) + εi

= α+ βxi + εi − βui

We can see that the classical regression assumptions do not necessarily hold here:

Cov(xi, εi − βui) = Cov(x∗
i + ui, εi − βui)

̸= 0

Instead, we can run a reverse regression:

x∗
i = γ0 + γ1yi + δi

δi satisfies all the classical regression assumptions, so γ̂1 will be unbiased and consistent. γ̂1 gives us
an upper bound on the value of β̂1. Why? Recall the Cauchy-Schwartz Inequality:(

n∑
i=1

xiyi

)2

≤

(
n∑

i=1

x2
i

n∑
i=1

y2i

)

Notice that:

β̂ =

∑n
i=1 xiyi∑n
i=1 x

2
i

γ̂ =

∑n
i=1 xiyi∑n
i=1 y

2
i
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Multiply γ̂ and β̂:

β̂γ̂ =
(
∑n

i=1 xiyi)
2∑n

i=1 x
2
i

∑n
i=1 y

2
i

Using the Cauchy-Schwartz inequality:

β̂γ̂ ≤
(∑n

i=1 x
2
i

∑n
i=1 y

2
i

)
(
∑n

i=1 x
2
i

∑n
i=1 y

2
i )

β̂ ≤ 1

β̂

So if β̂ is positive, γ̂ gives us an upper bound on β̂.
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