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Preface

This book is a compilation of recitations given throughout the 2021-22 academic year at the University
of Notre Dame for the first-year PhD econometrics sequence in the Department of Economics. They
were originally composed by Alex Houtz, who was the graduate teaching assistant for Drew Creal in
Fall 2021 and Marinho Bertanha in Spring 2022. The materials within may be distributed at any
time to any audience for individual or instructional use, given proper citation to the author. These
materials may not be used for commercial purposes.

Many problems were taken or adapted from Bruce Hansen’s two econometrics books, which can
be found here. The first book is referred to as simply “Hansen” while the second book is referred to
as “Hansen II.” Other textbooks that are drawn from include Wooldridge (found here) and Hayashi
(found here). The remaining problems are either cited in-text or are taken from the homework given
in the lecture class by either Drew Creal or Marinho Bertanha.

The following list documents the chain of teaching assistants at the University of Notre Dame that
used and/or edited this book, from earliest to latest:

1. Alex Houtz (2021-2022)
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Chapter 1

Introduction to Matlab

1.1 Matlab Basics

We need to begin with the structure of Matlab.

• The "Editor" window (upper right) is where we create the code file. Your saved work will come
from here.

• The "Command" window (bottom right) contains output from your code. You can also directly
input code here that you don’t want saved.

• The "Current Folder" window (upper left) contains the files specified in the path I have declared
(see below in Matlab Set-up).

7



8 CHAPTER 1. INTRODUCTION TO MATLAB

• The "Workspace" window (bottom left) contains saved variables, matrices, arrays, etc.

1.2 Matlab Set-up

There will be many Matlab assignments throughout the year. Establishing a simple, clean set-up to
your code will make all of our lives easier. Feel free to experiment and create your own, but here is an
example:

There are a couple "tricks" to note:

• The double percent signs, "%%", create new sections. So in the example, I have the section
"Introduction" and the section "Settings".

• The single percent sign, "%", tells Matlab that the following line is a comment and not code.

• The "clear, clc" commands clear the workspace and therefore ensure I’m not overwriting other
variables in other files.

• The "cd(...)" command specifies the path on which Matlab will look for data and function files.

• The semi-colon, ";" suppresses output in the command window.

1.3 Some Useful Commands
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• Variables must be defined for values, function outputs, and data if you want to reference them
later in your code.

• To import data, declare your path then read the data into Matlab using "readmatrix" or
"readtable". See documentation for more details on these commands.

• For loops will be useful in most Matlab assignments. In the example above, I’m creating two
error term vectors with a multivariate normal distribution. Essentially, Matlab is pulling two
random numbers from the distribution 10,000 times. NOTE: Try to avoid triple loops if possible.
These can take a long time to run.

1.4 Publishing

Your code needs to be able to run from the beginning to the end with no problems. One easy way to
check this, and also to turn in your code and output, is to publish your code.

• Usually we work in the Editor tab. To publish, click the Publish tab and then click on Publish.

• When the preview pops up, print to PDF. The end result should look similar to the picture below

• Make sure the necessary output is visible in the published PDF. Remember that by using a
semi-colon you suppress the output.
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1.5 General Advice

• Coding is hard. Do not worry if you are struggling. Find a friend to code with and work through
these together (do make sure you understand what the code is doing).

• Try to reduce run times for your code. Most assignments should be able to run in less than a
minute.

• The internet is your best friend for Matlab (and code in general). Check out places like Matlab
Answers first.

• Make sure to save your work.



Chapter 2

Univariate Probability

2.1 Monte Hall

This problem is important. Last year we had a question on the midterm using the same principles
found in the Monte Hall problem. In light of this information, I will lay out the reasoning for this
problem and solve it below. Make sure you know how to solve this question and any like it.

You are on the game show "Let’s Make a Deal with Monte Hall." Without loss of generality, you
pick door A but it is not immediately opened. To increase the drama, Monte opens one of the two
remaining doors, door B (again, without loss of generality) revealing that door B does not hide the
grand prize. Monte makes you an offer: Either switch your door choice to C or keep door A. Should
you switch doors?

Solution: We begin by first defining variables.

P ≡ Door hiding the prize

S ≡ Door selected by the player

H ≡ Door opened by the host

We begin with the assumption that, WLOG, you select door A. As such, the probabilities for the
location of the prize are:

P(P = 1|S = 1) =
1

3

P(P = 2|S = 1) =
1

3

P(P = 3|S = 1) =
1

3

Using Bayes’ Rule, we know that

11



12 CHAPTER 2. UNIVARIATE PROBABILITY

P(P = 1|H = 2, S = 1) =
P(H = 2|P = 1, S = 1)P(P = 1|S = 1)

P(H = 2|S = 1)

and

P(P = 3|H = 2, S = 1) =
P(H = 2|P = 3, S = 1)P(P = 3|S = 1)

P(H = 2|S = 1)

Note that we are missing the components of the total probability of P(H = 2|S = 1). But we know
these from your perspective:

P(H = 2|P = 1, S = 1) =
1

2

P(H = 2|P = 2, S = 1) = 0

P(H = 2|P = 3, S = 1) = 1

We can now compute the probabilities we want:

P(P = 1|H = 2, S = 1) =
P(H = 2|P = 1, S = 1)P(P = 1|S = 1)

P(H = 2|S = 1)

=
1
2 × 1

3
1
2 × 1

3 + 0× 1
3 + 1× 1

3

=
1
2

1
2 + 1

=
1

3

Where P(H = 2|S = 1) =
∑3

i=1 P(H = 2|P = i, S = 1)P(P = i|S = 1) via the law of total
probability.

Applying the same steps:
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P(P = 3|H = 2, S = 1) =
P(H = 2|P = 3, S = 1)P(P = 3|S = 1)

P(H = 2|S = 1)

=
1× 1

3
1
2 × 1

3 + 0× 1
3 + 1× 1

3

=
1
3

1
6 + 1

3

=
2

3

Therefore, the probability the prize is behind your first choice, door A, is 1
3 while the probability

the prize is behind your alternative choice, door C, is 2
3 . Given that you want to win, you should

switch your door choice to C.

2.2 Practice Problem 1: Hansen 2.7

We are given the chi-square distribution. We are tasked with deriving the pdf for the inverse chi-square
distribution.The pdf and change equation are given below:

fx(x) =
1

2r/2Γ( r2 )
xr/2−1e−x/2

Y = 1/X

Therefore, we need the change of variables formula:

fy(y) =

∣∣∣∣∂g−1(y)

∂y

∣∣∣∣ fx(g−1(y))

First we find g−1(y). We know g(x) = Y = 1/X. So g−1(y) = 1/Y .

Then we plug this into the chi-square pdf:

fx(g
−1(y)) =

1

2r/2Γ( r2 )

(
1

y

)r/2−1

e−1/(2y)

Finding the Jacobian next:
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∣∣∣∣∂g−1(y)

∂y

∣∣∣∣ = ∣∣∣∣−1

y2

∣∣∣∣
=

1

y2

Lastly, putting it all together:

fy(y) = y−2 1

2r/2Γ( r2 )
y−r/2+1e−1/(2y)

=
1

2r/2Γ( r2 )
y−r/2−1e−1/(2y)

2.3 Practice Problem 2: Hansen 2.11

Suppose X has density f(x) = e−x. Set Y = −ln(X) and find fy(y).
To solve, we follow the same procedure as before.

First we find g−1(y). We know g(x) = Y = −ln(X). So g−1(y) = e−y.

Plugging this into the pdf:

fx(g
−1(y)) = e−e−y

Then finding the Jacobian:

∣∣∣∣∂g−1(y)

∂y

∣∣∣∣ = ∣∣−e−y
∣∣

= e−y

Now altogether:

fy(y) = e−ye−e−y

2.4 Practice Problem 3: Hansen 3.5

For the exponential distribution, show:

(a)
∫∞
0
f(x|λ)dx = 1

(b) E[X] = λ
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(c) var(X) = λ2

2.4.1 Part a

Hansen defines the exponential distribution as follows:

fx(x) =
1

λ
e

−1
λ

Plug this into the integral and solve:

∫ ∞

0

1

λ
e

−x
λ dx =

1

λ

∫ ∞

0

e
−x
λ dx

=
1

λ

[
−λe

−x
λ

]∞
0

=
1

λ
[−λ(0− 1)]

=
λ

λ

= 1 ■

2.4.2 Part b

Using the definition of the expected value E[X] =
∫∞
−∞ xfx(x)dx:

E[X] =

∫ ∞

0

x

λ
e

−x
λ dx

=
1

λ

∫ ∞

0

xe
−x
λ dx

We need to do integration by parts. So by defining:

u = x

du = dx

dv = e
−x
λ dx

v = −λe
−x
λ

we can substitute into the integration by parts formula:

∫
udv = uv −

∫
vdu

Now we have

1

λ

{
[−xλe

−x
λ ]∞0 + λ

∫ ∞

0

e
−x
λ dx

}
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We use L’Hopital’s Rule to evaluate the first term at the upper limit:

limx→∞ − xλe
−x
λ = limx→∞

−xλ
e

x
λ

= limx→∞
−xλ

1

e
−x
λ

This puts the expression in an ∞/∞ form. Taking the derivative of the top and bottom:

limx→∞
−λ
1
λe

x
λ

= 0

Back to the problem:

1

λ

{
[−xλe

−x
λ ]∞0 + λ

∫ ∞

0

e
−x
λ dx

}
=

1

λ

{
[0− 0] + λ[−λe

−x
λ ]∞0

}
=
λ2

λ

= λ ■

2.4.3 Part c

Recall the variance decomposition formula: Var(X) = E[X2]− E[X]2. We know E[X], so all we need
is E[X2]. The steps are very similar as above:

E[X2] =
1

λ

∫ ∞

0

x2e
−x
λ dx

We need to do integration by parts again. Define

u = x2

du = 2xdx

dv = e
−x
λ dx

v = −λe
−x
λ

Continuing on by plugging these into the integration by parts formula:

=
1

λ

{
[−λx2e

−x
λ ]∞0 + 2λ

∫ ∞

0

xe
−x
λ dx

}
We can use L’Hopital’s Rule to show that the first term goes to 0 again. Even better, the second

term is the same term we solved when finding E[X]! Substituting everything in:
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=
1

λ
[0 + 2λ3]

= 2λ2

Plugging E[X2] and E[X] into the variance decomposition formula, we get:

Var(X) = E[X2]− E[X]2

= 2λ2 − λ2

= λ2 ■

2.5 Practice Problem 4: Hansen 3.9

For the gamma distribution, show:

(a)
∫∞
0
f(x|α, β)dx = 1

(b) E[X] = α
β

(c) var(X) = α
β2

2.5.1 Part a

We begin by noting that the pdf of a gamma distribution is fx(x|α, β) = βα

Γ(α)x
α−1e−βx. Subbing this

into the integral:

∫ ∞

0

βα

Γ(α)
xα−1e−βxdx

Using property 3 in Hansen Appendix A.28
(∫∞

0
xα−1e−λxdx = Γ(α)

λα

)
, we get:

=
βα

Γ(α)
· Γ(α)
βα

= 1 ■

2.5.2 Part b

Use the definition for the expected value of a random variable:
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E[X] =

∫ ∞

0

βα

Γ(α)
xαe−βxdx

=
βα

Γ(α)
· Γ(α+ 1)

βα+1
(Prop. 3)

=
βα

Γ(α)
· αΓ(α)
βα+1

(Prop. 2)

=
α

β
■

2.5.3 Part c

Using the variance decomposition equation, we again only need E[X2]. So:

E[X2] =

∫ ∞

0

βα

Γ(α)
xα+1e−βxdx

=
βα

(α)
· Γ(α+ 2)

βα+2
(Prop. 3)

=
βα

(α)
· (α+ 1)Γ(α+ 1)

βα+2
(Prop. 2)

=
βα

(α)
· (α+ 1)(α)Γ(α)

βα+2
(Prop. 2)

=
α2 + α

β2

Substitute into the variance decomposition formula:

Var(X) =
α2 + α

β2
− α2

β2

=
α

β2
■



Chapter 3

Multivariate Probability

3.1 Expected Value of a Log-Normal Distribution

Given that the transformation of a variable, Y ∼ N(µ, σ2), given by X = eY results in a log-normal
distribution, find the expected value of X.

3.1.1 Solution:

Note that E[X] = E[ey]. As a result, we can simply use the normal distribution instead of a log-normal
distribution:

E[X] = E[ey]

=

∫ ∞

−∞

ey√
2πσ2

e
−(y−µ)2

2σ2 dy

=

∫ ∞

−∞

1√
2πσ2

e
−(y−µ)2

2σ2 +ydy

=

∫ ∞

−∞

1√
2πσ2

e
−y2+2yµ−µ2+2yσ2

2σ2 dy

=

∫ ∞

−∞

1√
2πσ2

e
−(y2−2(µ+σ2)y+µ2)

2σ2 dy

So far this is just algebra. We now complete the square inside the exponential. We want the
end result to look like:

(
y − (µ+ σ2)

)2. To get this, we need to know what we should add to our
expression. Multiplying out gives us: y2 − 2(µ+ σ2)y + µ2 + 2σ2µ+ σ4. Therefore we must multiply

by e
2σ2µ+σ4−2σ2µ−σ4

2σ2 . This gives us:

19
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=

∫ ∞

−∞

1√
2πσ2

e
−(y−(µ+σ2))2+2σ2µ+σ4

2σ2 dy

= eµ+
1
2σ

2

∫ ∞

−∞

1√
2πσ2

e
−(y−(µ+σ2))2

2σ2 dy

But note that the part leftover inside the integral is just a normal pdf! We know that this integrates
to 1, which leaves us with:

= eµ+
1
2σ

2

■

3.2 Practice Problem 1: Hansen 4.1

Let f(x, y) = 1/4 for −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1.

(a) Verify that f(x, y) is a valid density function

(b) Find the marginal density of X

(c) Find the conditional density of Y given X = x

(d) Find E[Y |X = x]

(e) Determine P(X2 + Y 2 ≤ 1)

(f) Determine P(|X + Y | ≤ 2)

3.2.1 Solution: Part a

We need to show that the joint pdf integrates to 1. So:

∫ 1

−1

∫ 1

−1

1

4
dydx =

∫ 1

−1

[
1

4

]1
−1

dx

=

∫ 1

−1

1

2
dx

=

[
1

2
x

]1
−1

=
1

2
+

1

2

= 1 ■
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3.2.2 Solution: Part b

To find the marginal distribution for X, we simply integrate out Y.

fx(x) =

∫ 1

−1

1

4
dy

=

[
1

4
y

]1
−1

=
1

4
+

1

4

=
1

2
■

Note that due to symmetry, fy(y) is the same as fx(x).

3.2.3 Solution: Part c

We use the conditional density formula: fy|x(y|x) = f(x,y)
f(x)

fy|x(y|x) =
1/4

1/2

=
1

2
■

3.2.4 Solution: Part d

Recall that E[Y |X = x] =
∫
Y yf(y|x)dy. Applying this formula:

E[Y |X = x] =

∫ 1

−1

1

2
ydy

=

[
1

4
y2
]1
−1

=
1

4
− 1

4

= 0 ■

This is the same as E[Y ]. Why? Because fy|x(y|x) = fy(y), meaning that X ⊥ Y .

3.2.5 Solution: Part e

There are two ways to do this problem. I will use integrals for (e) and solve (f) graphically.
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P(x2 + y2 ≤ 1) = P(x2 ≤ 1− y2)

= P(−
√
1− y2 ≤ x ≤

√
1− y2)

=

∫ 1

−1

∫ √
1−y2

−
√

1−y2

1

4
dxdy

=

∫ 1

−1

√
1− y2

2
dy using an integral calculator

=

[
arcsin(y) + y

√
1− y2

4

]1
−1

=
π

4
■

Graphically, we can calculate the area of the square from the support of X and Y and the area of
the circle enclosed by X2 + Y 2 ≤ 1. Doing this yields an area of 4 for the square and an area of π for
the circle. Normalizing the space to an area of 1 by dividing by 4 leaves us with a probability equal to
π
4 confirming our integration solution.

3.2.6 Solution: Part f

As stated above, we will solve this graphically as solving via integration is tricky. Drawing a picture
reveals the simplicity of this problem:

Where the shaded red area is every combination of X and Y such that their sum is less than two.
Since our domain for each variable is between -1 and 1, P(|X + Y | ≤ 2) = 1.
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3.3 Practice Problem 2: Hansen 4.7

Let X and Y have joint density f(x, y) = e−x−y for x > 0 and y > 0. Find fx(x) and fy(y) to
determine if X ⊥ Y.

3.3.1 Solution:

To find the marginal densities, we integrate out the other variable. So:

fx(x) =

∫ ∞

0

e−x−ydy

=
[
−e−x−y

]∞
0

= 0 + e−x

= e−x

Similarly:

fy(y) =

∫ ∞

0

e−x−ydx

=
[
−e−x−y

]∞
0

= 0 + e−y

= e−y

Recall that X and Y are ⊥ if fx(x) · fy(y) = f(x, y).

fx(x) · fy(y) = e−x · e−y

= e−x−y

= f(x, y) ■

So X and Y are ⊥.

3.4 Practice Problem 3: Multivariate Change of Variables

Using the joint pdf from the previous problem (f(x, y) = e−x−y), apply the two transformations
Z = X − Y and W = X + Y . Find the marginal distributions for Z and W .1

1Credit to Penn State

https://online.stat.psu.edu/stat414/lesson/23/23.1
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3.4.1 Solution: Finding the inverse functions

We begin with solving for X. Rearranging the transformation equations, we find that Z + Y = X and
W − Y = X. Setting these equal:

Z + Y =W − Y

2Y =W − Z

Y =
W − Z

2

Similarly, by solving for Y, we find that:

−Z +X =W −X

2X =W + Z

X =
W + Z

2

3.4.2 Solution: Plug inverse functions into the joint pdf

fxy(x, y) = e−x−y

f(g−1(z, w), h−1(z, w)) = e
−w−z

2 + z−w
2

= e
−2w

2

= e−w

3.4.3 Solution: The Jacobian

The Jacobian is the same as always:

|J | =

∣∣∣∣∣ ∂x
∂z

∂x
∂w

∂y
∂z

∂y
∂w

∣∣∣∣∣
=

∣∣∣∣∣ 1
2

1
2

−1
2

1
2

∣∣∣∣∣
=

1

4
+

1

4

=
1

2

3.4.4 Solution: Substitute into the change of variables formula

Using the same formula as before
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fzw(z, w) = e−w · 1
2

=
e−w

2

Now we have our joint pdf!

3.4.5 Solution: Finding the marginal pdfs

First we need to figure out the support for W and Z. We know that:

0 < x <∞

0 <
w + z

2
<∞

0 < w + z <∞

0 < y <∞

0 <
w − z

2
<∞

0 < w − z <∞

From here we can determine that

−w < z < w 0 < w <∞

We are ready to find the marginal distribution for W:

fw(w) =

∫ w

−w

e−w

2
dz

=

[
1

2
e−wz

]w
−w

=
1

2
e−ww +

1

2
e−ww

= we−w for 0 < w <∞

One more to go! We need to re-evaluate the support before we can continue. We can write the
support as:

−z < w <∞ z < w <∞ with −∞ < z <∞
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So:

fz(z) =


∫∞
−z

e−w

2 dw for −z < w <∞∫∞
z

e−w

2 dw for z < w <∞

=


[−1

2 e
−w
]∞
−z

for z < 0[−1
2 e

−w
]∞
z

for z > 0

=

 1
2e

z for z < 0

1
2e

−z for z > 0

If we combine these two cases, we arrive at our answer:

fz(z) =
1

2
e−|z|

This is the Laplace distribution’s pdf with a location parameter of zero and a scale parameter of 1.
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Dependent Random Variables

4.1 Previous Problem: Hansen 4.14

Let X1 ∼ Γ(r, 1) and X2 ∼ Γ(s, 1) be independent. Find the distribution of Y = X1 +X2.

4.1.1 Solution:

Many of you did change of variables on the last homework. That approach works well and should
be your first instinct. Using change of variables here, though, is not particularly elegant. A more
efficient method of arriving at the answer is via the moment generating function of the gamma random
variable. We begin by finding that:

M(t) = E[etx] where X ∼ Γ(α, β)

=

∫ ∞

0

etx
1

Γ(α)
β−αxα−1e

−x
β dx

=
1

Γ(α)
β−α

∫ ∞

0

xα−1e
−x
β +txdx

=
1

Γ(α)
β−α

∫ ∞

0

xα−1e−[
1
β−t]xdx

Note that we can use the gamma function’s properties to evaluate the inside of the integral. Using
property 3 in Hansen:

=
1

Γ(α)
β−α · Γ(α)

[
β

1− βt

]α
=

(
1

1− βt

)α

Okay, now that we know the MGF for a gamma random variable (which we could just look up on
the web), we can begin to solve. We start with finding the MGF for Y :

27
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E[ety] = E[et(x1+x2)]

= E[etx1+tx2 ]

= E[etx1etx2 ] Now, due to independence:

= E[etx1 ]E[etx2 ]

=

(
1

1− t

)r

·
(

1

1− t

)s

=

(
1

1− t

)r+s

But this should look familiar! After all, it is just the MGF for a gamma random variable with a
shape parameter of r + s. Therefore Y ∼ Γ(r + s, 1)

4.2 Practice Problem 1: Hansen 4.19

Consider the hierarchical distribution

X|N ∼ χ2
2N

N ∼ Poisson(λ)

Find

(a) E[X]

(b) V ar(X)

4.2.1 Solution: Part a

We use the law of iterated expectations: E[X] = EY E[X|Y ]

E[X] = ENE[X|N ]

= E[2N ]

= 2λ

4.2.2 Solution: Part b

We use the law of total variance: V ar(X) = E[V ar(X|Y )] + V ar(E[X|Y ])
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V ar(X) = E[V ar(X|N)] + V ar(E[X|N ])

= E[4N ] + V ar(2N)

= 4λ+ 4V ar(N)

= 4λ+ 4λ

= 8λ

4.3 Practice Problem 2: AR(2) Process

An AR(2) process relates a random variable located in time period t to two lags of that random
variable. We usually write this as: yt = d+ ϕ1yt−1 + ϕ2yt−2 + εt where εt ∼ WN(0, σ2). Recall that
white noise implies that ϵt has no autocorrelation but does not imply that εt is not independent from
its past.

(a) Find E[yt]

(b) Find V ar(yt)

(c) Find γ0, γ1, and γ2

(d) Find the impulse responses for a shock εt for k ∈ 0, 1, 2, 3, 4

(e) Find E[yt+3|t]

4.3.1 Solution: Part a

We just take the expectation of the AR(2) equation:

E[yt] = E[d+ ϕ1yt−1 + ϕ2yt−2 + εt]

µy = d+ ϕ1E[yt−1] + ϕ2E[yt−2] + 0

µy = d+ (ϕ1 + ϕ2)µy

µy(1− ϕ1 − ϕ2) = d

µy =
d

1− ϕ1 − ϕ2

4.3.2 Solution: Part b

Similarly, we take the variance of the AR(2) equation:
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V ar(yt) = V ar(d+ ϕ1yt−1 + ϕ2yt−2 + εt)

γ0 = ϕ21V ar(yt−1) + ϕ22V ar(yt−2) + 2ϕ1ϕ2Cov(yt−1, yt−2) + σ2

γ0 = (ϕ21 + ϕ22)γ0 + 2ϕ1ϕ2γ1 + σ2

4.3.3 Solution: Part c

In class, Drew proved that the autocorrelation function for an AR(2) is given by: ρj = ϕ1ρj−1+ϕ2ρj−2.
Using this equation we can find what we need. First, let’s find γ1:

γ1 = ϕ1γ0 + ϕ2γ−1 Recall that γ−i = γi

γ1 = ϕ1γ0 + ϕ2γ1

γ1 =
ϕ1γ0
1− ϕ2

Plugging this into the equation we found for γ0 in part a:

γ0 = (ϕ21 + ϕ22)γ0 + 2ϕ1ϕ2
ϕ1γ0
1− ϕ2

+ σ2

γ0(1− ϕ21 − ϕ22 − 2ϕ1ϕ2
ϕ1

1− ϕ2
) = σ2

γ0 =
σ2

1− ϕ21 − ϕ22 − 2ϕ1ϕ2
ϕ1

1−ϕ2

Plug this into the expression for γ1:

γ1 =
ϕ1γ0
1− ϕ2

γ1 =
ϕ1

1− ϕ2

[
σ2

1− ϕ21 − ϕ22 − 2ϕ1ϕ2
ϕ1

1−ϕ2

]

Lastly, use the ACF to find γ2:

γ2 = ϕ1γ1 + ϕ2γ0

γ2 =
ϕ21

1− ϕ2

[
σ2

1− ϕ21 − ϕ22 − 2ϕ1ϕ2
ϕ1

1−ϕ2

]
+

ϕ2σ
2

1− ϕ21 − ϕ22 − 2ϕ1ϕ2
ϕ1

1−ϕ2

What if we did not have the ACF provided? We could always calculate γ0, γ1, and γ2 by brute
force. First, we rewrite the AR(2):
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yt = d+ ϕ1yt−1 + ϕ2yt−2 + εt

yt = µy(1− ϕ1 − ϕ2) + ϕ1yt−1 + ϕ2yt−2 + εt

(yt − µy) = ϕ1(yt−1 − µy) + ϕ2(yt−2 − µy) + εt

If we wanted to calculate the unconditional variance γ0, for example, then:

(yt − µy)
2 = [ϕ1(yt−1 − µy) + ϕ2(yt−2 − µy) + εt] (yt − µy)

E[(yt − µy)
2] = E[(ϕ1(yt−1 − µy) + ϕ2(yt−2 − µy) + εt) (yt − µy)]

= γ0

What if we wanted to calculate γ1?

(yt − µy)(yt−1 − µy) = [ϕ1(yt−1 − µy) + ϕ2(yt−2 − µy) + εt] (yt−1 − µy)

E[(yt − µy)(yt−1 − µy)] = E[(ϕ1(yt−1 − µy) + ϕ2(yt−2 − µy) + εt) (yt−1 − µy)]

= γ1

Similarly for γ2:

(yt − µy)(yt−2 − µy) = [ϕ1(yt−1 − µy) + ϕ2(yt−2 − µy) + εt] (yt−1 − µy)

E[(yt − µy)(yt−2 − µy)] = E[(ϕ1(yt−1 − µy) + ϕ2(yt−2 − µy) + εt) (yt−2 − µy)]

= γ2

4.3.4 Solution: Part d

Impulses are defined as ∂yt+k

∂εt
. Let’s find this for k = 0 first:

yt = d+ ϕ1yt−1 + ϕ2yt−2 + εt

∂yt
∂εt

= 1

Now for k = 1:
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yt+1 = d+ ϕ1yt + ϕ2yt−1 + εt+1

yt+1 = d+ ϕ1(d+ ϕ1yt−1 + ϕ2yt−2 + εt) + ϕ2yt−1 + εt+1

∂yt+1

∂εt
= ϕ1

For k = 2:

yt+2 = d+ ϕ1yt+1 + ϕ2yt + εt+2

∂yt+2

∂εt
= ϕ1 ·

∂

∂εt
yt+1 + ϕ2 ·

∂

∂εt
yt

= ϕ21 + ϕ2

And for k = 3:

yt+3 = d+ ϕ1yt+2 + ϕ2yt+1 + εt+3

∂yt+3

∂εt
= ϕ1 ·

∂

∂εt
yt+2 + ϕ2 ·

∂

∂εt
yt+1

= ϕ31 + 2ϕ1ϕ2

Finally for k = 4:

yt+4 = d+ ϕ1yt+3 + ϕ2yt+2 + εt+4

∂yt+4

∂εt
= ϕ1 ·

∂

∂εt
yt+3 + ϕ2 ·

∂

∂εt
yt+2

= ϕ41 + 3ϕ21ϕ2 + ϕ22

As you can see, calculating impulse responses for an AR(2) by hand is much more labor-intensive
than calculating them for an AR(1).

4.3.5 Solution: Part e

This is similar to calculating the unconditional moment. Now, though, we know all the variables up
to time t. So:
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E[yt+3|t] = E[d+ ϕ1yt+2 + ϕ2yt+1 + εt+3|t]

= d+ ϕ1E[yt+2|t] + ϕ2E[yt+1|t] + 0

= d+ ϕ1E[d+ ϕ1yt+1 + ϕ2yt + εt+2|t] + ϕ2E[d+ ϕ1yt + ϕ2yt−1 + εt+1|t]

= d+ ϕ1(d+ ϕ2yt + ϕ1E[d+ ϕ1yt + ϕ2yt−1 + εt+1|t]) + ϕ2(d+ ϕ1yt + ϕ2yt−1)

= d+ ϕ1d+ ϕ1ϕ2yt + ϕ21d+ ϕ31yt + ϕ21ϕ2yt−1 + ϕ22yt−1 + ϕ2d+ ϕ2ϕ1yt + ϕ22yt−1

= d(1 + ϕ1 + ϕ21 + ϕ2) + yt(ϕ
3
1 + 2ϕ1ϕ2) + yt−1(ϕ

2
1ϕ2 + ϕ22)

Notice how we treated any variable dated at time t or before as if they were constants. That’s the
key to solving conditional expectations or variances with respect to time.

4.4 Practice Problem 3: Deriving the MA(∞) Form for an

AR(1)

Drew went over this in class, but this is an important wrench to have in your toolbox. The MA(∞)
form splits your autoregressive process into the stationary mean and sum of impulse shocks. We start
with a basic AR(1):

yt = d+ ϕyt−1 + εt Recursively sub-in:

= d+ ϕ(d+ ϕyt−2 + εt−1) + εt

= d(1 + ϕ) + ϕ2yt−2 + ϕεt−1 + εt

= d(1 + ϕ) + ϕ2(d+ ϕyt−3 + εt−2) + ϕεt−1 + εt

= d(1 + ϕ+ ϕ2) + ϕ3yt−3 + ϕ2εt−2 + ϕεt−1 + εt

= d(1 + ϕ+ ϕ2) + ϕ3(d+ ϕyt−4 + εt−3) + ϕ2εt−2 + ϕεt−1 + εt

= d(1 + ϕ+ ϕ2 + ϕ3) + ϕ4yt−4 + ϕ3εt−3 + ϕ2εt−2 + ϕεt−1 + εt

We see a pattern emerging here. Using induction, we can write this process as:

= d

∞∑
i=1

ϕi−1 +

∞∑
j=0

ϕjεt−j

Using the fact that
∑∞

k=0 ar
k = a

1−r , and making the assumption that ϕ < 1, this becomes:
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=
d

1− ϕ
+

∞∑
j=0

ϕjεt−j

We can simplify further. Solving for the mean of an AR(1) process:

E[yt] = E[d+ ϕyt−1 + εt]

µy = d+ ϕE[yt−1] + 0

µy = d+ ϕµy

µy =
d

1− ϕ

Therefore, the MA(∞) form becomes:

yt = µy +

∞∑
j=0

ϕjεt−j

Where µy is the unconditional mean of Y and the sum contains the impulse shocks of ε.
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Dependent Vectors of Random
Variables

5.1 Previous Problem 1: Hansen 5.12

Show that the MGF of X ∼N(µ,Σ) ∈ Rm is

M(t) = E[et
TX ]

= et
Tµ+ 1

2 t
TΣt

5.1.1 Solution:

We start from the definition of the moment generating function:

Mx(t) = E[etx]

=
1√
2π

∣∣∣Σ−1/2
∣∣∣ ∫ ∞

−∞
et

T x · e
−1

2 (x−µ)TΣ−1(x−µ)dx

=
1√
2π

∣∣∣Σ−1/2
∣∣∣ ∫ ∞

−∞
e

−1
2 (x

TΣ−1x−µTΣ−1x−xTΣ−1µ+µTΣ−1µ)+tT xdx

=
1√
2π

∣∣∣Σ−1/2
∣∣∣ ∫ ∞

−∞
e

−1
2 (x

TΣ−1x−µTΣ−1x−xTΣ−1µ+µTΣ−1µ−2tT x)dx

=
1√
2π

∣∣∣Σ−1/2
∣∣∣ e−µT Σ−1µ

2

∫ ∞

−∞
e

−1
2 (x

TΣ−1x−(µT+tΣ)Σ−1x−xTΣ−1µ−tT x)dx

=
1√
2π

∣∣∣Σ−1/2
∣∣∣ e−µT Σ−1µ

2

∫ ∞

−∞
e

−1
2 (x

TΣ−1x−(µT+tΣ)Σ−1x−(µTΣ−1x)T−tT x)dx

35
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=
1√
2π

∣∣∣Σ−1/2
∣∣∣ e−µT Σ−1µ

2

∫ ∞

−∞
e

−1
2 (x

TΣ−1x−(µT+tΣ)Σ−1x−(µT+tTΣ)TΣ−1x)dx

Now we need to complete the square inside the integrand’s exponential. We can see that we will
want: (xT − (µT + tΣ)T )Σ−1(x− (µ+ tΣ)). Multiplying this out to see what we need:

(xT − (µT + tΣ)T )Σ−1(x− (µ+ tΣ)) = xTΣ−1x− xTΣ−1(µ+ tΣ)− (µT + tΣ)TΣ−1x

+ (µT + tΣ)TΣ−1(µT + tΣ)

So we need the last term. Therefore we multiply by:

e−
1
2 ((µ

T+tΣ)TΣ−1(µT+tΣ)−(µT+tΣ)TΣ−1(µT+tΣ))

Now we have:

=
1√
2π

∣∣∣Σ−1/2
∣∣∣ e−µT Σ−1µ

2 e−
1
2 ((µ

T+tΣ)TΣ−1(µT+tΣ))

∫ ∞

−∞
e

−1
2 (x

T−(µT+tΣ)T )Σ−1(x−(µ+tΣ))dx

= e
1
2 (−µTΣ−1µ+µTΣ−1µ+2µT t+tT t)

= eµ
T t+ 1

2 t
TΣt ■

5.2 Previous Problem 2: Deriving the F Distribution

Define the random variables U and V as:

U ∼ χ2(k)

V ∼ χ2(a)

Assume that U and V are independent. Define the random variable F as:

F =
U

k
· a
V

We will derive the F distribution and expectation.

5.2.1 Solution:

We begin with finding the joint distribution of U and V . Because they are independent, we can
multiply their pdfs together. After doing so and combining like terms, we arrive at:
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f(u, v) =
1

2
k+a
2 Γ(k2 )Γ(

a
2 )
u

k
2−1v

a
2−1e−

(u+v)
2

We now need to do a change of variables. Rearranging the definition of F:

F =
U

k
· a
V

U =
kFV

a

So we map U to kFV
a and V to V . The next step is finding the Jacobian:

|J | =

∣∣∣∣∣ ∂U∂F ∂U
∂V

∂V
∂F

∂V
∂V

∣∣∣∣∣
=

∣∣∣∣∣kVa kF
a

0 1

∣∣∣∣∣
=
kV

a

Plug our inverse function into the joint pdf and multiply by the Jacobian to get (after combining
like terms):

f(F, V ) =
k

a

1

2
k+a
2 Γ(k2 )Γ(

a
2 )

(
kFV

a

) k
2−1

V
a
2 e−( kFV

a +V )/2

To find the pdf of F, we simply integrate out V:

f(F ) =

∫ ∞

−∞

k

a

1

2
k+a
2 Γ(k2 )Γ(

a
2 )

(
kFV

a

) k
2−1

V
a
2 e−( kFV

a +V )/2dV

=
k

a

1

2
k+a
2 Γ(k2 )Γ(

a
2 )

∫ ∞

−∞

(
kFV

a

) k
2−1

V
a
2 e−( kFV

a +V )/2dV

=
k

a

1

2
k+a
2 Γ(k2 )Γ(

a
2 )

(
kF

a

) k
2−1 ∫ ∞

−∞
V

a+k
2 −1e−( kFV

a +V )/2dV

Note that this is the kernel of Γ
(
a+k
2 , 12

(
kF
a + 1

))
. By multiplying and dividing by the appropriate

normalizing constant we can integrate the integrand out to 1, leaving us with:

f(F ) =
k

a

Γ(a+k
2 )

2
k+a
2 Γ(k2 )Γ(

a
2 )

(
kF

a

) k
2−1(

1

2
·
(
kF

a
+ 1

))− (a+k)
2
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Which is the pdf for the F distribution. One last step! Now, we either calculate the expected value
for the F distribution the easy way or the hard way. This problem misleads us into thinking that the
easy way is to use the pdf we just derived. The far easier path though is as follows:

E[F ] = E
[
U

k
· a
V

]
=
a

k
E
[
U

V

]
Using the independence of U and V :

=
a

k
E[U ]E

[
1

V

]
Using the mean of a χ2 and inverse χ2:

=
a

k
(k)

(
1

a− 2

)
=

a

a− 2
■

5.3 Practice Problem 1: Companion Form

Companion form basically rewrites any linear model (that has finite memory) into a model that looks
like a VAR(1). As such, we can determine the mean, variance, covariance, and whether a linear model
is stationary from this form. In general:

αt = d+ Tαt−1 +Rεt

is known as the companion form where εt ∼ W.N.(0,Q). Structure-wise, αt is mx1, d is mx1, T
is mxm, R is mxq, and Q is qxq.

By looking at how the companion form is written, we note that Q is the variance-covariance matrix
of the shocks, T is the matrix placing weights on the right-hand side variables, d is the vector of means,
and R is vector of weights on the shock term. α is the vector of variables in general, leaving out the
last shock lag and/or last variable lag.

The easiest way to demonstrate how companion form can be used is by working through an example.
Let’s look at an ARMA(3,1) model. First, let’s write the model as we are used to seeing it:

yt = d+ ϕ1yt−1 + ϕ2yt−2 + ϕ3yt−3 + θεt−1 + εt

This should look familiar. Looking at our companion form rules we can begin to build our matrices.
Starting with αt:



5.3. PRACTICE PROBLEM 1: COMPANION FORM 39

αt =


yt

yt−1

yt−2

εt


Notice how I left out yt−3 and εt−1. Next, we build the d vector:

d =


d

0

0

0


That’s not too difficult to build. Now we go onto the T matrix:

T =


ϕ1 ϕ2 ϕ3 θ

1 0 0 0

0 1 0 0

0 0 0 0


and then the αt−1 vector:

αt−1 =


yt−1

yt−2

yt−3

εt−1


Notice that by multiplying T with αt−1 we get the terms with the coefficients in the ARMA

process. And then, because yt−1 must equal yt−1 and yt−2 must equal yt−2 we place ones in the
appropriate places. Only one more vector to go:

R =


1

0

0

1


Putting all of these together, we get the companion form:
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
yt

yt−1

yt−2

εt

 =


d

0

0

0

+


ϕ1 ϕ2 ϕ3 θ

1 0 0 0

0 1 0 0

0 0 0 0



yt−1

yt−2

yt−3

εt−1

+


1

0

0

1

 εt

Companion forms are not unique. Rather, we can swap rows to create "new" companion forms.
Each variation, if done correctly, should return the same forecasts and unconditional moments as the
others.

I claimed earlier that companion form is useful for testing stationarity. How do we test this? We
want to see if the coefficients on the middle terms lead to exploding yt values. To do so, we can check
if the eigenvalues of our slope matrix (T) are < 1.2 Recall that to check the eigenvalues of a matrix,
we use:

|T − λI| = 0

If the eigenvalues (λ) are ≥ 1 our process is not stationary.

I also claimed that we can easily find the unconditional moments. Conveniently, if αt is stationary,
the unconditional moments follow formulaically:

E[αt] = (I − T)−1d

= µα

vec(var(αt)) = (Im2 − (T ⊗ T))−1vec(RQRT )

= vec(Γ0)

cov(αt,αt−j) = TjΓ0

= Γj

Let’s apply these formulae to our ARMA(3,1) process. First, we solve for the eigenvalues:

2Technically, this is a necessary but not sufficient condition. In time-series econometrics, we often treat it as sufficient.
For more information, see Carnegie Mellon.

https://www.stat.cmu.edu/~cshalizi/dst/18/lectures/12/ar-vs-var.html
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|T − λI| =

∣∣∣∣∣∣∣∣∣∣


ϕ1 ϕ2 ϕ3 θ

1 0 0 0

0 1 0 0

0 0 0 0

−


λ 0 0 0

0 λ 0 0

0 0 λ 0

0 0 0 λ


∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣


ϕ1 − λ ϕ2 ϕ3 θ

1 −λ 0 0

0 1 −λ 0

0 0 0 −λ


∣∣∣∣∣∣∣∣∣∣

Because this is quite large, I use a solver to calculate the determinant and get:

0 = −λ(−λ(−λ(ϕ1 − λ)− ϕ2) + ϕ3)

If the values of the coefficients are such that each root of the equation is, in absolute terms, less
than 1 (on the real or complex unit circle), then the process is stationary. Here, Wolfram Alpha returns
only one eigenvalue: 0. So the process is stationary.

Now let’s solve for the unconditional mean:

E[αt] = (I − T)−1d

=



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−


ϕ1 ϕ2 ϕ3 θ

1 0 0 0

0 1 0 0

0 0 0 0




−1 
d

0

0

0


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=



1− ϕ1 −ϕ2 −ϕ3 −θ
−1 1 0 0

0 −1 1 0

0 0 0 1




−1 
d

0

0

0

 Let P ≡ 1−ϕ1 − ϕ2 − ϕ3

=
1

P


1 ϕ3 + ϕ2 ϕ3 θ

1 1− ϕ1 ϕ3 θ

1 1− ϕ1 1− ϕ1 − ϕ2 θ

0 0 0 1



d

0

0

0



=


d
P
d
P
d
P

0



This matches all of the results from previous problems! The mean is usually tractable to do by
hand. The variance, though, due to the kronecker product can take up lots of space. A computer can
easily handle the computation though (see Problem Set 5).

5.4 Matlab Help

This week’s Matlab section is hard. Because it’s hard, I’m going to provide you a little guidance so
that you know that you’re on the right track.

First, please use vectorization to generate random data. Do not use loops. The run time for your
code can explode. Here’s an example:

Notice how the variables "e" and "n" are built. Instead of having to loop, Matlab can vectorize
the process.

Here is how your graphs from question four should look:
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Here is how your sample ACF and theoretical ACF should approximately line up:

Here is how your VAR(1) ACFs should look:
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And lastly, this is how your IRFs should look:

Good luck!



Chapter 6

Bias and Consistency

6.1 The Analogy Principle

Most of this is in Drew’s slides, but this topic is important. I will cover the analogy principle quickly.

Suppose we have a function β = h(θ) where θ = E[g(yi)]. We want to estimate β. We do not know
E[g(yi)]. Therefore, we replace θ with θ̂ = 1

nΣ
n
i=1yi. So β̂ = h(θ̂).

Let’s go through a simple example using variance. Variance is given by :

σ2 = E[X2]− E[X]2

In practice, replace the expectations with the sample mean. Therefore:

σ̂2 =
1

n
Σn

i=1x
2
i −

(
1

n
Σn

i=1xi

)2

We now have a viable estimate for variance.

6.2 Bias

The definition of bias is:

E[θ̂]− θ = bias

If bias = 0, we say that the estimator is unbiased. How does this apply to the analogy principle?
Ideally, we’d like to create unbiased estimators for the parameters we are looking for. Let’s look at the
estimator for the variance that we just found.

First, we should check our two plug-ins to see if they are unbiased.

45
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E
[
1

n
Σn

i=1x
2
i

]
=

1

n
E[Σn

i=1x
2
i ]

=
1

n
Σn

i=1E[x2i ]

=
1

n
Σn

i=1µ
′
2

=
1

n
· nµ′

2

= µ′
2

So that part is unbiased. Let’s check the standard mean:

E
[
1

n
Σn

i=1xi

]
=

1

n
E[Σn

i=1xi]

=
1

n
Σn

i=1E[xi]

=
1

n
Σn

i=1µ

=
1

n
· nµ

= µ

So this is also unbiased. Let’s check them together in the variance estimate:

E[σ̂2] = E

[
1

n
Σn

i=1x
2
i −

(
1

n
Σn

i=1xi

)2
]

= E
[
1

n
Σn

i=1x
2
i

]
− E

[(
1

n
Σn

i=1xi

)2
]

= E
[
1

n
Σn

i=1x
2
i

]
− E

[(
µ− µ+

1

n
Σn

i=1xi

)2
]

= E
[
1

n
Σn

i=1x
2
i

]
− E

[(
µ+

1

n
Σn

i=1(xi − µ)

)2
]

= E
[
1

n
Σn

i=1x
2
i

]
− E

[
µ2 + 2µ

1

n
Σn

i=1(xi − µ) +

(
1

n
Σn

i=1(xi − µ)

)2
]
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= E
[
1

n
Σn

i=1x
2
i

]
− E

[
µ2 + 2µ(x̄− µ) + (x̄− µ)2

]
= µ′

2 − µ2 − 2µ(µ− µ)− E[(x̄− µ)2]

= σ2 − V ar(x̄)

= σ2 − V ar

(
1

n
Σn

i=1xi

)
= σ2 − 1

n2
Σn

i=1V ar(xi)

= σ2 − 1

n2
· nσ2

= σ2 − σ2

n

=

(
1− 1

n

)
σ2

Unfortunately, our estimator is biased, where the bias is − 1
nσ

2. In class, Drew showed you that an
unbiased estimator for variance is:

ŝ2 =
1

n− 1
Σn

i=1[yi − ȳ]

To correct our estimator, we simply add ŝ2

n :

σ̂2
unbiased = σ̂2 +

ŝ2

n

E
[
σ̂2
unbiased

]
= E

[
σ̂2 +

ŝ2

n

]
= E[σ̂2] + E

[
ŝ2

n

]

= σ2 − σ2

n
+
σ2

n

= σ2

Note that sometimes obtaining an unbiased estimator requires sacrificing precision. This trade-
off gives rise to the bias-variance trade-off idea. One way to balance these two is to minimize the
mean-squared error:

m.s.e(θ̂) = V ar(θ̂) +
(
bias(θ̂)

)2
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6.3 Consistency

Let’s complicate the issue now. When we take asymptotics, we are looking not at how the estimators
behave in expectation, but how they behave as our sample size nears infinity. We have three theorems
that will be helpful in this section.

The Continuous Mapping Theorem says that if xn
P−→ x then h(xn)

P−→ h(x), for continuous h(·).
The relationship also holds for convergence in distribution and convergence almost surely.

Slutsky’s Theorem is an extension of the CMT. This theorem states that:

If xn
d−→ x and yn

P−→ y, then:

(i) xn + yn
d−→ x+ y

(ii) xnyn
d−→ xy

(iii) xn

yn

d−→ x
y

Note the convergence requirements for x and y.
The last theorem is the Delta Method. You will use this theorem over and over again throughout

the year with the Central Limit Theorem. Make sure you know it!

√
n(h(xn)− h(x))

d−→ N(0, HTV H)

where H = ∂
∂uh(u)

T .

6.3.1 Application to the Sample Variance

Recall our estimator for σ2 consisted of two parts:

θ̂ =

[
θ̂1

θ̂2

]

=

[
1
nΣ

n
i=1xi

1
nΣ

n
i=1x

2
i

]

By the Weak Law of Large Numbers 1
nΣ

n
i=1xi

P−→ E[x]. Similarly, the WLLN means that
1
nΣ

n
i=1x

2
i

P−→ E[x2]. Recall the σ2 estimator:

σ̂2 =
1

n
Σn

i=1x
2
i −

(
1

n
Σn

i=1xi

)2

The difference of two continuous functions is continuous, so the CMT applies:



6.4. MIDTERM REVIEW 49

1

n
Σn

i=1x
2
i −

(
1

n
Σn

i=1xi

)2
P−→ E[x2]− E[x]2

= σ2

What we have found is that while the sample variance is not unbiased, it is consistent. We now
need to find the variance of our estimator using the Delta Method formula.

First, we start with V :

V = E

([ x
x2

]
−

[
E[x]
E[x2]

])([
x

x2

]
−

[
E[x]
E[x2]

])T


= E

[ x− E[x]
x2 − E[x2]

][
x− E[x]
x2 − E[x2]

]T
Note that h(θ) = θ2 − θ21. Now we find H :

H =
∂

∂θ
h(θ)

=
∂

∂θ
(θ2 − θ21)

=

[
2θ1

1

]

Putting this altogether, our asymptotic variance is:

HTV H =

[
2θ1

1

]
E

[ x− E[x]
x2 − E[x2]

][
x− E[x]
x2 − E[x2]

]T[2θ1
1

]T

Therefore, via the Delta Method:

√
n(σ̂2 − σ2)

d−→ N

0,

[
2θ1

1

]
E

[ x− E[x]
x2 − E[x2]

][
x− E[x]
x2 − E[x2]

]T[2θ1
1

]T

6.4 Midterm Review

We have covered an advanced probability course in less than a half-semester. The amount of material
you have learned over the last month and a half is not insignificant. In an effort to help organize your
studying for the midterm, I have created a list of the big topics.
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6.4.1 Basics of Probability

(a) Probability rules

(i) Conditional Probability

(ii) Bayes’ Rule

(iii) Law of Total Probability

(iv) Monte Hall Problem

(b) Properties of the CDF and PDF

(c) Converting between CDFs and PDFs

6.4.2 Distributions

(a) Joint, marginal, and conditional PDFs

(b) Univariate and Multivariate Change of Variables

(c) Calculating expectations, variances, covariances

(d) Law of Total Variance and Law of Iterated Expectations

(e) Distribution kernels and normalizing constants

(f) Moment Generating Functions

6.4.3 Dependent Random Variables

(a) Common representations

(i) MA(q)

(ii) AR(p)

(iii) ARMA(p,q)

(iv) MA(∞) form

(v) VAR(p)

(vi) White Noise assumptions

(b) Unconditional expectations, variances, covariances

(i) From standard form

(ii) From MA(∞) form

(iii) From Companion form

(c) Impulse Response Functions

(d) Autocorrelation Functions
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(e) Conditional expectations and variances

(f) Companion Form

(i) Stationarity test

(ii) Formulae for means, variances, covariances

6.4.4 Analogy Principle and Bias

(a) How to apply the Analogy Principle

(b) Formula for bias

(c) Calculating bias

(d) Bias-variance trade-off

Recall that here we are living in "expectations world."

6.4.5 Asymptotics

(a) Convergence in distribution

(b) Convergence in probability

(c) Weak Law of Large Numbers

(d) Central Limit Theorem/Asymptotic Normality

(e) Continuous Mapping Theorem

(f) Slutsky’s Theorem

(g) The Delta Method

Now we are living in “asymptopia.”3

3Check out this book on estimation.

https://bookstore.ams.org/stml-71
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Chapter 7

Asymptotics

7.1 Previous Problem: Gaussian Autoregressive Process

Consider the following autoregression model:

yt = µ+ ϕ(yt−1 − µ) + εt εt
i.i.d∼ N(0, σ2)

7.1.1 Part a

Calculate the expected value of the sample mean of yt.

Using brute force:

E[ȳT ] = E

[
1

T

T∑
t=1

yt

]

=
1

T

T∑
t=1

E[yt]

=
1

T

T∑
t=1

µ

= µ

7.1.2 Part b

Write the AR(1) in its MA(∞) representation. Provide an explicit description of the MA(∞) coeffi-
cients ψj .

Using recursive substitution:

53
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yt = µ+ ϕ (µ+ ϕ(yt−2 − µ) + εt−1 − µ) + εt

= µ+ ϕ2(yt−2 − µ) + ϕεt−1 + εt

= µ+ ϕ2 (µ+ ϕ(yt−3 − µ) + εt−2 − µ) + ϕεt−1 + εt

= µ+ ϕ3(yt−3 − µ) + ϕ2εt−2 + ϕεt−1 + εt

We can see the pattern and note that this process will become:

yt = µ+

∞∑
j=1

ϕjεt−j

Therefore the MA weights are ψj = ϕj .

7.1.3 Part c

Consider the following sum:

S =

∞∑
j=0

ψj

Provide an explicit expression for S.

This is fairly straightforward if we remember our geometric series:

S =

∞∑
j=0

ψj

=

∞∑
j=0

ϕj

=
1

1− ϕ

7.1.4 Part d

Consider the variance of the sample mean:

V ar(ȳT ) = V ar

(
1

T

T∑
t=1

yt

)

Provide an explicit expression for the variance. How does this compare to when yt is i.i.d.?
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This is painful. But it is good to see at least once.

V ar(ȳT ) = E[(ȳt − µ)2]

= E

( 1

T

T∑
t=1

yt − µ

)2


= E

( 1

T

T∑
t=1

(yt − µ)

)2


=
1

T 2
E[{(y1 − µ) + (y2 − µ) + ...+ (yT − µ)}{(y1 − µ) + (y2 − µ) + ...+ (yT − µ)}]

=
1

T 2
E[(y1 − µ){(y1 − µ) + (y2 − µ) + ...+ (yT − µ)}

+ (y2 − µ){(y1 − µ) + (y2 − µ) + ...+ (yT − µ)}+

...+ (yT − µ){(y1 − µ) + (y2 − µ) + ...+ (yT − µ)}]

Notice that these are autocovariances. So:

V ar(ȳT ) =
1

T 2
[γ0 + γ1 + γ2 + ...+ γT1

+ γ1 + γ0 + γ1 + ...+ γT−2

+ ...+ γT−1 + γT−2 + γT−3 + ...+ γ0]

=
1

T 2
[Tγ0 + 2(T − 1)γ1 + 2(T − 2)γ2 + ...+ 2γT−1]

Now recall that for the AR(1) model, γj = ϕjγ0 and γ0 = σ2

1−ϕ2 . Plugging these in:

V ar(ȳT ) =
1

T 2
[Tγ0 + 2(T − 1)ϕγ0 + 2(T − 2)ϕ2γ0 + ...+ 2ϕT−1γ0]

=
1

T 2
γ0[T + 2(T − 1)ϕ+ 2(T − 2)ϕ2 + 2ϕT−1]

=
σ2

T 2(1− ϕ2)
[T + 2(T − 1)ϕ+ 2(T − 2)ϕ2 + ...+ 2ϕT−1]

This expression is the variance for ȳT . Note that if ϕ = 0, then the process is i.i.d. and we get:

V ar(ȳT ) =
σ2

T

This expression is less than the the non-i.i.d. case.

7.1.5 Part e

Under the parametric assumption that the data is normally distributed, what is the exact finite sam-
pling distribution of the sample mean ȳT ?
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Sums of normal random variables are normal, so the sampling distribution is:

ȳT ∼ N
(
µ, V ar

(√
T · ȳT

))

7.2 Practice Problem 1: Hansen 8.1

Let X be distributed Bernoulli with P (X = 1) = p and P (X = 0) = 1− p.

(a) Show that p = E[X]

(b) Write down the moment estimator p̂

(c) Find V ar(p̂)

(d) Find the asymptotic distribution of
√
n(p̂− p) as n→ ∞

7.2.1 Part a

We use the old definition of E[X] from way back at the beginning of the semester:

E[X] = p(1) + (1− p)(0)

= p

7.2.2 Part b

Let’s use the analogy principle:

p = E[X]

p̂ =
1

n

n∑
i=1

xi

7.2.3 Part c

No tricks here either. We’ll use brute force:
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V ar(p̂) = V ar

(
1

n

n∑
i=1

xi

)
Assuming independence:

=
1

n2

n∑
i=1

V ar(xi)

=
1

n2

n∑
i=1

p(1− p)

=
1

n
p(1− p)

7.2.4 Part d

Using the Central Limit Theorem:

√
n(p̂− p)

d−→ N(0, V )

Where we know the mean asymptotically is zero because p̂ converges to p by the WLLN. There are
two ways to find the asymptotic variance here. First is the brute force method:

V = E
[
(x− E[x])2

]
= E

[
x2 − 2E[x]x+ E[x]2

]
= E[x2]− 2E[x]2 + E[x]2

= E[x2]− E[x]2

= p− p2

= p(1− p)

or second we can use:

V = V ar(
√
np̂)

= nV ar(p̂)

= n · 1
n
p(1− p)

= p(1− p)

Either method should always give the same answer.
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7.3 Practice Problem 2: Hansen 8.3

Find the moment estimator of µ′
3 = E[x3] and show that

√
n(µ̂′

3 − µ′
3)

d−→ N(0, V ). In addition, write
V as a function of the moments of X.

7.3.1 Solution

We first use the analogy principle:

µ′
3 = E[x3]

µ̂′
3 =

1

n

n∑
i=1

x3i

Next, we show that µ̂′
3 is consistent. This is straightforward, as the WLLN takes care of it:

µ̂′
3 =

1

n

n∑
i=1

x3i
P−→ E[x3] = µ′

3

So now we know that
√
n(µ̂′

3 − µ′
3)

d−→ N(0, V ). Next, we find V :

V = E
[(
x3 − E[x3]

)2]
= E

[
x6 − 2x3E[x3] + E

[
x3
]2]

= E[x6]− 2E
[
x3
]2

+ E
[
x3
]2

= E[x6]− E
[
x3
]2

We could have used the same trick as we used in the first practice problem if we wanted to calculate
the sample variance for the estimator.

7.4 Practice Problem 3: Hansen 8.8

Assume that:

√
n

(
θ̂1 − θ1

θ̂2 − θ2

)
d−→ N(0,Σ)

Use the Delta Method to find the asymptotic distribution of the following statistics:

(a) θ̂1θ̂2

(b) eθ̂1+θ̂2
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(c) If θ2 ̸= 0, θ̂1
θ̂2
2

(d) θ̂31 + θ̂1θ̂
2
2

7.4.1 Part a

Using Slutsky’s Theorem, we know that θ̂1θ̂2
P−→ θ1θ2 since θ̂1

P−→ θ1 and θ̂2
P−→ θ2 from the set-up

of the problem. So we only need to find the asymptotic variance. Using the Delta Method, we start
with H:

H =
∂

∂θ
θ1θ2

=

[
θ2

θ1

]

We are given that V = Σ, so the asymptotic distribution is:

√
n(θ̂1θ̂2 − θ1θ2)

d−→ N

0,

[
θ2

θ1

]T
Σ

[
θ2

θ1

]

7.4.2 Part b

We know that eθ̂1+θ̂2 P−→ eθ1+θ2 by the Continuous Mapping Theorem since θ̂1 + θ̂2
P−→ θ1 + θ2 by

Slutsky’s Theorem and the exponential transformation is continuous. We now find H:

H =
∂

∂θ
eθ1+θ2

=

[
eθ1+θ2

eθ1+θ2

]

Putting this altogether:

√
n
(
eθ̂1+θ̂2

)
d−→ N

0,

[
eθ1+θ2

eθ1+θ2

]T
Σ

[
eθ1+θ2

eθ1+θ2

]

7.4.3 Part c

We know that θ̂1
θ̂2
2

P−→ θ1
θ2
2

by the CMT, as division is continuous as long as the denominator is not zero

(which we are given), since by the CMT θ̂22
P−→ θ22. We now find H:
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H =
∂

∂θ

θ1
θ22

=

[
1
θ2
2

− 2θ1
θ3
2

]

Altogether, we now have:

√
n

(
θ̂1

θ̂22
− θ1
θ22

)
d−→ N

0,

[
1
θ2
2

− 2θ1
θ3
2

]T
Σ

[
1
θ2
2

− 2θ1
θ3
2

]

7.4.4 Part d

We know that θ̂31 + θ̂1θ̂
2
2

P−→ θ31 + θ1θ
2
2 by the CMT since θ̂31

P−→ θ31 by the CMT, θ̂22
P−→ θ22 by the

CMT, and θ̂1θ̂22
P−→ θ1θ

2
2 by Slutsky’s theorem. We now find H:

H =
∂

∂θ

(
θ31 + θ1θ

2
2

)
=

[
3θ21 + θ22

2θ1θ2

]

Now pulling this all together:

√
n
(
θ̂31 + θ̂1θ̂

2
2 − (θ31 + θ1θ

2
2)
)

d−→ N

0,

[
3θ21 + θ22

2θ1θ2

]T
Σ

[
3θ21 + θ22

2θ1θ2

]

7.5 Matlab Checkpoints

The Matlab comes at the end of a long theoretical exercise. Make sure you stay close to the the
theorems and you’ll be fine. To help you out, here are a few checks to make sure your code’s output
is correct.

First, if you use parameter values of α = 2 and δ = 0.5, your true asymptotic variance for your
estimator should be 1.25.

Second, here are some pictures of how your histograms should eventually look:
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Each histogram has 50,000 different variance calculations. Hopefully these help you stay on the
right track.
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Chapter 8

Maximum Likelihood Estimation

8.1 Maximum Likelihood Theory

8.1.1 Basics of MLE

The Maximum Likelihood Estimator seeks to estimate a parameter that maximizes the likelihood
function. The likelihood function describes the probability of observing the data that we’ve collected
with parameters as the arguments. Of course, the underlying functions and therefore parameters in
use are chosen by the modeller. The likelihood function is given as:

Ln(θ|Y ) =

n∏
i=1

f(yi|θ)

where f(yi|θ) is the underlying DGP of the data.

To make analysis easier, we often take the natural log of the likelihood function. Note that because
natural log is a monotonically increasing function, the argmax of the log transformation is the same
as the argmax of the original likelihood function.

The log-likelihood function is:

ℓn(θ) =

n∑
i=1

ln (f(yi|θ))

Remember that these functions are functions of θ and we keep y fixed.

To estimate θ, we find the score vector. The score vector is defined as:

sn(θ) =
∂ℓn(θ)

∂θ

Note that if θ is k × 1, then sn(θ) is also k × 1.

63
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If the log-likelihood function is differentiable over θ, then we can set the score vector equal to zero
and solve for θ̂. Recall from your microeconomics class that this FOC is necessary and not sufficient
for determining whether we are at a maximum. As such, we should check SOSCs

(
∂2ℓn(θ)
∂θ∂θ′ < 0

)
just

to be sure.

8.1.2 Fisher Information Matrix

The Fisher information matrix conveys how much information the data Y carries about the unknown
parameter θ. It is given by:

Iθ,n = V ar

(
∂ℓn(θ)

∂θ

)
= E

[
∂ℓn(θ)

∂θ

∂ℓn(θ)

∂θ′

]
Note that if our model is regular (see slide 23 of Topic 7) and correctly specified (see slide 6 of

Topic 7), then the Fisher information matrix equals the expected Hessian:

Iθ,n = Hθ,n

E
[
∂ℓn(θ)

∂θ

∂ℓn(θ)

∂θ′

]
= E

[
−∂

2ℓn(θ)

∂θ∂θ′

]
It is useful to remember that the asymptotic distribution of our MLE estimators is:

√
n(θ̂n − θ)

d−→ N
(
0, I−1

θ,1

)
as long as assumptions 1-11 on slide 54 of Topic 7 hold.

If the model is mis-specified, then the asymptotic distribution is:

√
n(θ̂n − θ)

d−→ N
(
0,H−1

θ,1Iθ,1H
−1
θ,1

)

8.1.3 Cramér-Rao Lower Bound

If a model is regular, parametric, and correctly specified with an interior solution for θ that is unbiased,
then the lowest possible variance is the Cramér-Rao Lower Bound. That is:

V ar(θ̂n) ≥ (nIθ,1)−1

Note that if our data is i.i.d., then nIθ,1 = Iθ,n.
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8.1.4 Estimating the Asymptotic Variance of the Estimator

I’m not going to type all of these out, but you can find the four different ways to estimate the
asymptotic variance at the end of the Topic 7 slides. Pay close attention to the definitions as the
differences between the estimates can be difficult to understand.

8.2 Practice Problem 1: Hansen 10.4

Let X be distributed Pareto with density f(x) = 1
π(1+(x−θ)2) for x ∈ R.

(a) Find the log-likelihood function of ℓn(θ).

(b) Find the first-order condition for the MLE θ̂ for θ. You will not be able to solve for θ̂.

8.2.1 Part a

We begin by finding the likelihood function. We will then take the natural log of that function. Using
the definition of the likelihood function:

L(θ|x) =
n∏

i=1

1

π(1 + (xi − θ)2)

ℓn(θ) =

n∑
i=1

−ln
(
π(1 + (xi − θ)2

)
=

n∑
i=1

−ln(π)− ln
(
1 + (xi − θ)2

)
= −nln(π)−

n∑
i=1

ln
(
1 + (xi − θ)2

)

8.2.2 Part b

Now that we have the log-likelihood function, we can find the score vector and set that equal to zero:

∂ℓn(θ)

∂θ
=

∂

∂θ

[
−nln(π)−

n∑
i=1

ln
(
1 + (xi − θ)2

)]

=

n∑
i=1

2(xi − θ)

1 + (xi − θ)2

= 0

Usually we’d like to solve for θ̂, but note that here we cannot. We need a numerical solver to find
the optimal estimator. So our work, analytically at least, is done.
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8.3 Practice Problem 2: Hansen 10.7

Take the Pareto model f(x) = αx−1−α, x ≥ 1. Calculate the information for α using the second
derivative.

8.3.1 Solution

We start with the likelihood function. We will then take the natural log to find the log-likelihood
function.

L(α|x) =
n∏

i=1

(αx−1−α
i )

ℓn(α) =

n∑
i=1

ln(αx−1−α
i )

=

n∑
i=1

ln(α)− (1 + α)ln(xi)

= nln(α)−
n∑

i=1

(1 + α)ln(xi)

Now that we have the log-likelihood we can find the score vector:

∂ℓn(α)

∂α
=

∂

∂α

[
nln(α)−

n∑
i=1

(1 + α)ln(xi)

]

=
n

α
−

n∑
i=1

ln(xi)

The problem tells us to use the second derivative, so taking the derivative with respect to α again:

∂2ℓn(α)

∂α2
=

∂

∂α

[
n

α
−

n∑
i=1

ln(xi)

]
= − n

α2

Now that we have the second derivative, we look at the formula for the expected Hessian:

Hθ,n = E
[
−∂

2ℓn(α)

∂α2

]
= E

[ n
α2

]
=

n

α2
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Assuming the information matrix equality holds, then:

Iθ,n =
n

α2

8.4 Practice Problem 3: Hansen 10.8

Find the Cramér-Rao lower bound for p in the Bernoulli model. In Section 10.3, we derived that the
MLE for p is p̂ = X̄n. Compute V ar(p̂). Compare V ar(p̂) with the Cramér-Rao lower bound.

8.4.1 Finding the Cramér-Rao lower bound

We first note that the Cramér-Rao lower bound is given by (nIθ,1)−1. So we know we need to first
find the likelihood function. The pmf of a Bernoulli random variable is π(x) = px(1− p)1−x. So:

L(p|x) =
n∏

i=1

pxi(1− p)1−xi

ℓn(p) =

n∑
i=1

ln(pxi(1− p)1−xi)

=

n∑
i=1

xiln(p) + (1− xi)ln(1− p)

Next, we know we need the score vector, so:

∂ℓn(p)

∂p
=

∂

∂p

[
n∑

i=1

xiln(p) + (1− xi)ln(1− p)

]

=

∑n
i=1 xi
p

−
∑n

i=1(1− xi)

1− p

If we assume that the information matrix equality holds (which you’ll show in Hansen 10.6), then
we can use the second derivative:

∂2ℓn(p)

∂p2
=

∂

∂p

[∑n
i=1 xi
p

−
∑n

i=1(1− xi)

1− p

]
= −

∑n
i=1 xi
p2

−
∑n

i=1(1− xi)

(1− p)2

Now take the negative expectation:
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E
[
−∂

2ℓn(p)

∂p2

]
= E

[∑n
i=1 xi
p2

+

∑n
i=1(1− xi)

(1− p)2

]
=

1

p2

n∑
i=1

E[xi] +
n

(1− p)2
−
∑n

i=1 E[xi]
(1− p)2

=
np

p2
+

n

(1− p)2
− np

(1− p)2

=
n

p
+
n(1− p)

(1− p)2

=
n− np+ np

p(1− p)

=
n

p(1− p)

Since the information matrix equality is assumed to hold (again, you’ll show this in Hansen 10.6):

Iθ,n =
n

p(1− p)

and because our data is i.i.d.:

nIθ,1 =
n

p(1− p)

We have one last step. We must invert this last expression:

(nIθ,1)−1 =
p(1− p)

n

This is the Cramér-Rao lower bound.

8.4.2 Variance of the Estimator

We still need to find V ar(p̂). So:
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V ar(p̂) = V ar

(
1

n

n∑
i=1

xi

)

=
1

n2
V ar

(
n∑

i=1

xi

)

=
1

n2

n∑
i=1

V ar(xi)

=
1

n2

n∑
i=1

p(1− p)

=
n

n2
p(1− p)

=
p(1− p)

n

Note that this is the Cramér-Rao lower bound.

8.5 Matlab Help

The Matlab this week is tricky again. The analytical part is fairly straightforward - just be sure to
check your algebra carefully! As a hint: define your data in terms of sample means to make the math
more tractable.

On part v, you are asked to derive estimates for the asymptotic covariance matrices. Another
hint: you should arrive at the same matrix for both V̂0 and V̂1. If you don’t, go back and rework the
problem.

For the coding section, here are pictures of what your time series plots should look like:
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As another checkpoint, your robust variance-covariance matrix for the Euro-zone should look like
this:

with your variances for α̂, β̂, and σ̂2 respectively down the diagonal.

Lastly, the very last section asks you to plot a regression line over the raw data for interest rate
differentials versus return rates. Your end result should look like:
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Hopefully these checkpoints and hints are helpful. Good luck on the problem set.
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Chapter 9

Method of Moments

9.1 Previous Problem 1: Matlab Theory Part

In the previous problem set, Drew gave us a linear regression model:

yi = α+ βxi + εi εi ∼ N(0, σ2)

where yi ∼ N(α+ βxi, σ
2). Since yi is distributed normally, we know its pdf:

f(yi|xi) =
1√
2πσ2

e−
1

2σ2 (yi−α−βxi)
2

Conditioning on the xi, we want to find the Fisher Information matrix.

9.1.1 Conditional Log-Likelihood

Start first with the likelihood, then take the log:

Ln(θ) =

n∏
i=1

f(yi|xi)

ℓn(θ) =

n∑
i=1

ln

(
1√
2πσ2

e−
1

2σ2 (yi−α−βxi)
2

)

= −n
2
ln(2πσ2)− 1

2σ2

n∑
i=1

(yi − α− βxi)
2

9.1.2 Score Vector

Next we take the derivative of the log-likelihood with respect to each of our three parameters:

73
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∂ℓn(θ)

∂α
=

1

σ2

n∑
i=1

(yi − α− βxi)

∂ℓn(θ)

∂β
=

1

σ2

n∑
i=1

(yi − α− βxi)xi

∂ℓn(θ)

∂σ2
= − n

2σ2
+

1

2σ4

n∑
i=1

(yi − α− βxi)
2

Let’s simplify one equation at a time, starting with α:

1

σ2

n∑
i=1

(yi − α− βxi) =
1

σ2

[
n∑

i=1

yi − nα− β

n∑
i=1

xi

]

=
1

σ2
[nȳ − nα− βnx̄]

Recall that we set these first-order conditions equal to zero, so we can multiply by σ2 and add nα
to get:

nα = nȳ − nβx̄

α̂ = ȳ − βx̄

Before we can advance further, we must solve for β̂:

0 =
1

σ2

n∑
i=1

(yi − α− βxi)xi

=
1

σ2

n∑
i=1

xiyi − αxi − βx2i

=
1

σ2
[nxy − nαx̄− nβxx]

β̂ =
xy − αx̄

xx

Now we can plug β̂ into α̂:
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α̂ = ȳ −
(
xy − αx̄

xx

)
x̄

α̂

(
1− x̄2

xx

)
= ȳ − x̄xy

xx

α̂
(
xx− x̄2

)
= xxȳ − xyx̄

α̂ =
xxȳ − xyx̄

xx− x̄2

We can then plug α̂ back into β̂:

β̂ =
xy − xxȳ−xyx̄

xx−x̄2 x̄

xx

=

xy(xx−x̄2)−xxȳx̄+xyx̄2

xx−x̄2

xx

=
xyxx− xxx̄ȳ − x̄2xy + x̄2xy

xx(xx− x̄2)

=
xy − x̄ȳ

xx− x̄2

Now we can solve for σ2:

0 = − n

2σ2
+

1

2σ4

n∑
i=1

(yi − α− βxi)
2

n

2σ2
=

1

2σ4

n∑
i=1

(yi − α− βxi)
2

σ̂2 =
1

n

n∑
i=1

(yi − α̂− β̂xi)
2

9.1.3 Deriving the Observed Hessian

The observed Hessian Ho
θ,n is defined as:

Ho
θ,n =

[
∂2ℓn(θ)

∂θ∂θ′

]

Let’s go one at a time:
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∂2ℓn(θ)

∂α2
= − n

σ2

∂2ℓn(θ)

∂α∂β
= − 1

σ2

n∑
i=1

xi

∂2ℓn(θ)

∂α∂σ2
= − 1

σ4

n∑
i=1

(yi − α− βxi)

∂2ℓn(θ)

∂β2
= − 1

σ2

n∑
i=1

x2i

∂2ℓn(θ)

∂β∂σ2
= − 1

σ4

n∑
i=1

(yi − α− βxi)xi

∂2ℓn(θ)

(∂σ2)
2 =

n

2σ4
− 1

σ6

n∑
i=1

(yi − α− βxi)
2

9.1.4 Information Matrix

If we assume the information matrix equality holds, then the expectation of the negative of the observed
Hessian is the same as the information matrix. Recall that we treat xi as fixed data so that its mean
is its expectation. Let’s first take the negative expectation of the second derivatives we calculated:

E
[
−∂

2ℓn(θ)

∂α2

]
=

n

σ2

E
[
−∂

2ℓn(θ)

∂α∂β

]
=

n

σ2
x̄

E
[
−∂

2ℓn(θ)

∂α∂σ2

]
= 0

E
[
−∂

2ℓn(θ)

∂β2

]
=

n

σ2
xx

E
[
−∂

2ℓn(θ)

∂β∂σ2

]
= 0

E

[
−∂

2ℓn(θ)

(∂σ2)
2

]
=

n

2σ4

Note that we use both the property that the sum of the residuals is zero and that the sum of
squared residuals is equal to the variance.

So the information matrix is:

Iθ,n =


n
σ2

n
σ2 x̄ 0

n
σ2 x̄

n
σ2xx 0

0 0 n
2σ4


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So that was a lot of work! Know how to calculate information matrices quickly for the comprehen-
sive exam in June.

9.2 Method of Moments Theory

I will focus on the modern view of the Method of Moments, as Drew refers to it:
Let β be a k× 1 vector of unknown parameters and m(·) be a k× 1 vector of functions that satisfy

the population moment

E[m(y,β)] = 0

The method of moments estimation β̂n is the solution to this system of k unknowns in k equations
(also known as the solution to the moment conditions):

1

n

n∑
i=1

m
(
yi, β̂n

)
= 0

This should look familiar! After all, we are basically using the analogy principle again.
A very simple example: estimating the population mean. Our moment condition is thus:

E[yi − µ] = 0 Pushing the expectation through:

E[yi]− µ = 0 Adding the population moment across:

E[yi] = µ

Now we use the definition of the method of moments estimator:

1

n

n∑
i=1

yi = µ̂

Which is exactly like the analogy principle. It may be tempting to jump straight to the analogy
principle but really slow down and think through constructing the moment conditions.

Now suppose that we have a function of population moments:

β = h(E[g(y)])

We need to construct moment conditions for each population moment and for the function β. So:

E[m(y,β,θ)] =

[
E[g(y)]− θ

h(θ)− β

]
=

[
0

0

]
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Here, we would find our MoM estimators for each element of θ and then plug them into h to obtain
our MoM plug-in estimator for β.

9.3 Practice Problem 1: Hansen 11.3

A Bernoulli random variable X is

P (X = 0) = 1− p

p(X = 1) = p

(a) Propose a moment estimator p̂ for p.

(b) Find the variance of the asymptotic distribution of
√
n(p̂− p).

(c) Propose an estimator of the asymptotic variance of p̂.

9.3.1 Part a

We begin with the moment conditions:

E[xi − µ] = 0

E[xi] = µ

Note that for a Bernoulli random variable µ = p. Use the method of moments estimator:

µ̂ =
1

n

n∑
i=1

xi

p̂ =
1

n

n∑
i=1

xi

9.3.2 Part b

Using the WLLN, we know that p̂ P−→ p. So we just need to find the variance:

V = E[(x− p)(x− p)]

= E[(x− p)2]

= p(1− p)

9.3.3 Part c

This part is really as easy as it seems. Put hats on top of the unknown parameters in our asymptotic
variance:
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ÂV AR = p̂(1− p̂)

9.4 Practice Problem 2: Hansen 11.4

Propose a moment estimator λ̂ for the parameter λ of a Poisson distribution.

9.4.1 Solution

Set-up our moment condition:

E[xi − µ] = 0

E[xi] = µ

Using the definition of the MoM estimator:

1

n

n∑
i=1

xi = µ̂

Note that for the Poisson distribution µ = λ, so:

1

n

n∑
i=1

xi = λ̂

9.5 Matlab Help

This is another week of brutal Matlab coding. This time, the homework asks you to code up a Newey-
West Variance estimator and run Monte Carlo simulations with it. The Newey-West estimator is
defined as follows:

V̂ NW = Γ̂0 +

q∑
j=1

k(j) ·
(
Γ̂j + Γ̂

′
j

)

where q is defined as the number of lags included and k(j) = 1− j
q+1 . Of course, we do not know the

true autocovariance matrices, so we estimate them using:

Γ̂j =
1

T − 1

T∑
t=j+1

(yt − ȳ)(yt−j − ȳ)′
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where T is the number of time-series observations. Pay close attention to the indices on the summations
and the subscripts on the variables.

Feel free to drop the number of Monte Carlo simulations to 1000 for computation speed. Remember
that when doing Monte-Carlo simulation, each simulation should have its own Newey-West estimator,
mean, and data set.

Sometimes you’ll receive an error that you cannot Cholesky decompose the Newey-West estimator.
Change the number of lags included in the estimator before rewriting your code just to check if that
will solve the problem. On a side note, the Newey-West estimator has given me trouble every time I
have had to code it so far, so I wish you luck.

Here are some pictures of the histograms and time series I got to guide your journey:
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Chapter 10

Hypothesis Testing and Confidence
Intervals

10.1 Previous Problem 1: OLS Estimator

The previous problem set went well, so I will cover a quick question just to review Method of Moments
estimation. Looking at question 5 from PS 9:

Consider the k × 1 vector of population moment conditions

E[xi(yi − x′
iβ)] = 0

where β is a k × 1 vector of unknown parameters, yi is a scalar and xi is a k × 1 vector.

(a) Solve for the method of moments population parameter β0.

(b) In the solution to (a), the population method of moments parameter β0 is only identified
if what condition holds?

(c) Suppose you observe an i.i.d. sample {yi,xi}ni=1 from some unknown "true" joint dis-
tribution f(yi,xi). Using the analogy principle, propose estimators for the following
population moments:

E[xix
′
i]

E[xix
′
i]
−1

E[xiyi]

Are the estimators you proposed consistent for the population moments?

(d) Consider again the i.i.d. sample {yi,xi}ni=1 from f(yi,xi). Given your solution to part
(a), use the analogy principle to propose a method of moments estimator β̂n for the
population parameter β0.

83



84 CHAPTER 10. HYPOTHESIS TESTING AND CONFIDENCE INTERVALS

10.1.1 Part a

We first note the moment conditions:

E[xi(yi − x′
iβ)] = 0

Now, solve for β0:

E[xi(yi − x′
iβ)] = 0

E[xiyi]− E[xix
′
i]β = 0

E[xiyi] = E[xix
′
i]β

E[xix
′
i]
−1E[xiyi] = β0

10.1.2 Part b

For there to be one unique solution for β0, we need to be able to solve the equation. E[xiyi] shouldn’t
be a problem, but E[xix

′
i]
−1 may cause issues. If E[xix

′
i] is singular, then we will not be able to find

β0. For a matrix to be invertible, it needs to be full rank. Therefore, we need E[xix
′
i] to be full rank.

This requirement is known as the rank condition.

10.1.3 Part c

Simply apply the analogy principle:

E[xix
′
i] −→

1

n

n∑
i=1

xix
′
i (10.1)

E[xix
′
i]
−1 −→

(
1

n

n∑
i=1

xix
′
i

)−1

(10.2)

E[xiyi] −→
1

n

n∑
i=1

xiyi (10.3)

We know that (1) and (3) converge to the population moment by the WLLN. Because (1) converges
by the WLLN and because the inverse function is continuous over the reals, with the exception of zero
(because we assume the matrix is invertible, this is not a problem), (2) converges by the CMT.

10.1.4 Part d

Simply plug in our estimators from (c):

β̂n =

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiyi

)
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We have just derived the OLS estimator using the Method of Moments. We now know that OLS
is both a Maximum Likelihood Estimator and a Method of Moments of estimator.

10.2 Hypothesis Testing

From our undergraduate experience, we should be familiar with hypothesis testing. First, we set up
two competing hypotheses:

H0 : θ = θ0

HA : θ ̸= θ0

HA here is set-up as a two sided test. We could also theoretically set up a one-sided test (e.g.
HA < θ0) but, in economics at least, we want to remain open to results on either side of θ0.

How do we determine whether we have sufficient evidence to reject H0 (the null hypothesis)? First,
we must set the level of the test, α. α determines the maximum probability of obtaining a result at
least as extreme as the result we observe that we will accept. In other words, we want to be sure that
in less than α of the draws from the null distribution we obtain our result.

Of course, the null distribution matters here in finite distributions. Since calculating the critical
value (the value of a distribution in which more extreme values consists of α of the area under the
distribution) for some distributions is difficult, and in the real world we may not know the distribution
under the null hypothesis, we turn to asymptotic theory.

Recall the central limit theorem. For i.i.d. X:

√
n(x− µ)

σ

d−→ N(0, 1)

So let’s make use of this! We can find the critical values associated with the values of α (usually
0.01, 0.05, or 0.10) we choose easily. To find out if our results provide a value beyond the critical
values, we can reject the null.

Remembering that we compare our value with a distribution under the null hypothesis, we find the
following test statistic:

T (y, µ0) =

√
n(x− µ0)

σ

where µ0 is the value stated under the null hypothesis. If the null hypothesis is true, the asymptotic
distribution is ∼ N(0, 1). But if the null hypothesis is not true, then we will draw a value from a much
different distribution. We compare our t-statistic to the critical value associated with α (1.96 if α =
0.05) and decide whether to reject.

Another way of determining whether to reject our null hypothesis is to construct a confidence
interval. The confidence interval gives us a range of values that, 1-α of the time, will contain the true
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parameter value. To construct a confidence interval, we calculate:

CI1−α =

[
x̄− cv · σ√

n
, x̄+ cv · σ√

n

]
Where cv denotes the critical value associated with the asymptotic level.

If our null hypothesis is inside the confidence interval, we cannot reject the null at our α level.

10.3 Other Tests

There are other tests that we can do to reject null hypotheses.

10.3.1 Likelihood Ratio Test

The likelihood ratio test statistic LR(y) for testing H0 : θ ∈ Θ0 versus H1 : θ ∈ Θc
0 is, in logs:

lr(y) = 2
[
ln(L(θ̂|y)− ln(L(θ̂0|y)

]
where L(·) denotes the likelihood function from the MLE section.

The asymptotic distribution of the likelihood ratio is:

lr(y)
d−→ χ2

r

where r is the number of restrictions (null hypotheses tested).

10.3.2 Wald Test

The Wald test is as follows:

Tw(y) = ng(θ̂)′

(
∂g(θ̂)

∂θ
I−1

θ̂n,1

(
∂g(θ̂)

∂θ

)′)−1

g(θ̂)

where g(θ) relates the true θ and the null θ0. Usually, we like a linear g(θ):

g(θ) = θ − θ0 = 0

as the resulting Wald statistic is the square of the t-test!.
The asymptotic distribution of the Wald test is:

Tw(y)
d−→ χ2

r
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the same as the Likelihood Ratio test.

10.3.3 Score Test

The score test is as follows:

Ts(y) =
1

n

∂ℓn

(
θ̂
0

n

)
∂θ′ I−1

θ̂
0
n,1

∂ℓn
(
θ̂
0

n

)
∂θ′

′

This too has asymptotic distribution:

Ts(y)
d−→ χ2

r

Note that the superscript indicates whether we are using the null value or our estimate when setting
up the tests.

10.4 Practice Problem 1: Hansen 13.3 Extended

Take the exponential model with parameter λ. We want a test for H0 : λ = 1 against HA : λ ̸= 1.

(a) Develop a test based on the sample mean X̄n.

(b) Find the likelihood ratio statistic.

(c) Find the score test.

(d) Find the Wald statistic.

10.4.1 Part a

We begin with the standard asymptotic t-test:

T (x, µ0) =

√
n(x− µ0)

ŝ

=

√
n(x− λ0)

ŝ

=

√
n(x− 1)

ŝ

This is our asymptotic t-test.

Note that in this scenario, because we know the true distribution, we can actually calculate the
standard deviation:
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V ar(
√
nx̄) = nV ar

(
1

n

n∑
i=1

xi

)

=
1

n

n∑
i=1

V ar(xi)

=
1

n

n∑
i=1

λ̂2

= λ̂2

= x̄2

Then our t-test becomes:

T (x) =

√
n(x− 1)

ŝ

=

√
n(x− 1)√

x̄2

=

√
n(x− 1)

x̄

10.4.2 Part b

Using the formula for the likelihood ratio statistic, and noting that the exponential distribution has a
pdf of f(x|λ) = 1

λe
− x

λ :

lr(x) = 2
[
ln(L(θ̂|y)− ln(L(θ̂0|y)

]
= 2

[
ln

(
n∏

i=1

1

λ̂
e−

xi
λ̂

)
− ln

(
n∏

i=1

1

1
e−

xi
1

)]

= 2

[
n∑

i=1

(
−ln(λ̂)− 1

λ̂
xi

)
−

n∑
i=1

−xi

]

= 2

[
−nln(λ̂)− n

λ̂
x̄n + nx̄n

]
= 2

[
x̄n

(
n− n

λ̂

)
− nln(λ̂)

]
d−→ χ2

1
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10.4.3 Part c

We first need to find the score evaluated at the null hypothesis of λ0 = 1:[
dℓn(λ)

dλ

]
λ=λ0

= − n

λ0
+

n

λ20
x̄n

= −n
1
+
n

1
x̄n

= n(x̄n − 1)

Assuming the information matrix equality holds, the negative Hessian, and thus the information,
evaluated at the null value is:

Iλ0,1 =
1

λ20

= 1

So the score test is:

Ts(x) =
1

n
n(x̄n − 1) · 1 · n(x̄n − 1)

= n(x̄n − 1)2

d−→ χ2
1

10.4.4 Part d

Last test to derive. Using the constraint g(·) defined above:

g(λ) = λ− λ0

= λ− 1

= 0

Now we need the derivative of g(λ) with respect to the true λ:

∂g(λ)

∂λ
= 1

Using the Wald statistic formula from above:
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Tw(x) = ng(λ̂n)

(
∂g(λ)

∂λ
I−1

λ̂n,1

∂g(λ)

∂λ

)−1

g(λ̂n)

= n
(
λ̂n − 1

)
· 1

λ̂2n
· (λ̂n − 1)

=
n(λ̂n − 1)2

λ̂n
2

=
n(x̄n − 1)2

x̄n2

d−→ χ2
1

This result is the square of our t-test as expected.

10.5 Some Matlab Help

I did not code up your Matlab problem myself this week. Instead, I rely on Drew’s sample code from
last year. Ultimately, you end up finding the values for the likelihood ratio, Wald, and score tests for
a set up data where we assume the true DGP is Poisson. Therefore, your score vectors, Hessians, and
information matrices should be derived from this Poisson distribution.

As checkpoints for you while coding, here are the values you should reach for each test if you set
your random number generator seed to 10:

where the order is likelihood ratio first, Wald second, and score third.
Good luck on the homework!
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Basics of Regression

11.1 Previous Problem 1: Hansen 13.1 Extended

Take the Bernoulli model with probability parameter p. We want a test for H0 : p = 0.05 against
H1 : p ̸= 0.05.

(a) Develop a test based on the sample mean x̄n.

(b) Derive the likelihood ratio statistic. What is its asymptotic sampling distribution?

(c) Derive the score test. What is its asymptotic sampling distribution?

(d) Derive the Wald test. What is its asymptotic sampling distribution?

11.1.1 Part a

Because we know that the mean of a Bernoulli random variable is p, our estimator p̂ is simply x̄n. We
use a t-test for (a):

T =

√
n(x̄n − p0)

ŝ

=

√
n(x̄n − 0.05)

ŝ

Because we know the distribution of our random variable, we replace ŝ with the estimated true
variance. Bernoulli distributions have variance p(1− p), so our t-test becomes:

91
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T =

√
n(x̄n − 0.05)

ŝ

=

√
n(x̄n − 0.05)√
p̂(1− p̂)

=

√
n(x̄n − 0.05)√
x̄n(1− x̄n)

11.1.2 Part b

Our p̂0 = 0.05, so using the formula for the likelihood ratio statistic:

lrn = 2

[
n∑

i=1

ln
(
p̂yi(1− p̂)1−yi

)
−

n∑
i=1

ln
(
p̂yi

0 (1− p̂0)
1−yi

)]

= 2

[
n∑

i=1

yiln(p̂) + (1− yi)ln(1− p̂)−
n∑

i=1

yiln(0.05) + (1− yi)ln(1− 0.05)

]
d−→ χ2

1

Where the one degree of freedom comes from the one restriction we impose (the null hypothesis).

11.1.3 Part c

To derive the score test, we first need to find the score vector evaluated at the restricted value:

[
∂ℓn(p)

∂p

]
p=p0

=

[
n∑

i=1

yi
p

−
n∑

i=1

1− yi
1− p

]
p=p0

=

n∑
i=1

yi
0.05

−
n∑

i=1

1− yi
1− 0.05

=
nȳn
0.05

− n− nȳn
1− 0.05

= nȳn

[
20 +

20

19

]
− 20n

19

= nȳn

[
400

19

]
− 20n

19

We now need the information matrix evaluated under the null hypothesis. Knowing that this
parametric model is correctly specified (due to us knowing the underlying distribution) and regular,
we can use the information matrix equality:
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Ip̂0,1 = E
[
−∂ℓn(p)

∂p

]
p=p0

= E
[
ȳ

p2
− ȳ

(1− p)2
+

1

(1− p)2

]
p=p0

=

[
p

p2
− p

(1− p)2
+

1

(1− p)2

]
p=p0

=

[
1

p
+

1

1− p

]
p=p0

=

[
1− p+ p

p(1− p)

]
p=p0

=

[
1

p(1− p)

]
p=p0

=
1

0.05(1− 0.05)

=
400

19

We now have all of the pieces that we need. Plugging these into the score statistic formula:

Ts =
1

n

(
nȳ

[
400

19

]
− 20n

19

)
19

400

(
nȳ

[
400

19

]
− 20n

19

)
d−→ χ2

1

11.1.4 Part d

We first need to set up our g. As I noted last week, the easiest way to do this is linearly:

g(p) = p− p0

= p− 0.05

= 0

Next we need to take the derivative of g(p) with respect to p:

∂g(p)

∂p
= 1

Taking Ip̂0,1 we estimated above, simply replace p with p̂ and we have the information matrix we
need. Plugging everything into the Wald statistic formula:
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Tw = n(p̂− 0.05)(1 · p̂(1− p̂) · 1)−1(p̂− 0.05)

=
n(p̂− 0.05)2

p̂(1− p̂)
d−→ χ2

1

Notice that because p̂ = x̄n and because g(p) is linear, our Wald statistic is simply the square of
our t-statistic.

11.2 Regression Theory

Know the basics for linear regression theory. Putting in the work now will pay-off next semester in
Metrics II. Some of the material discussed below will seem unimportant now but will become important
when proving results in the Spring.

11.2.1 Two Special Matrices

Projection Matrix

Let X be an n × k matrix that is full rank. Then the projection matrix P is an n × n that results
from:

P = X(X′X)−1X ′

The projection matrix can be shown to have the following properties:

(i) PX = X

(ii) P = P ′

(iii) PP = P

(iv) tr(P ) = k and rank(P ) = k

We can use the projection matrix to find estimated ŷ values in our regressions.

Annihilator Matrix

Let X be an n × k matrix that is full rank. Then the projection matrix M is an n × n that results
from:

M = I − P

= I −X(X′X)−1X ′
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The annihilator matrix can be shown to have the following properties:

(i) MX = 0

(ii) MP = 0

(iii) M = M ′

(iv) MM = M

(v) tr(M) = n− k and rank(M) = n− k

We can use the annihilator matrix to remove parts of the regression that we are not interested in
estimating. Why you would do this may not be obvious now but you will see its usefulness when you
cover the Frisch-Waugh-Lovell Theorem. We can also use the annihilator matrix to find residuals.

11.2.2 Normal Linear Regression

The normal linear regression model is as follows:

yi = x′
iβ + εi εi ∼ N(0, σ2)

When using normal linear regression, we assume the following:

(i) The true model is linear and E[ε|X] = 0.

(ii) Data {yi,xi} are i.i.d.

(iii) E[|yi|] <∞ and E[||xi||2] <∞.

(iv) E[xix
′
i] is full rank.

(v) Conditional errors εi|xi are Gaussian.

Using maximum likelihood estimation, since we know the underlying DGP is normal, we can find
that our estimators are:

β̂ = (x′x)−1x′y

=

(
1

n

n∑
i=1

x′
ixi

)(
1

n

n∑
i=1

xiyi

)

σ̂2 =
1

n

n∑
i=1

(
yi − x′

iβ̂
)2

=
1

n

n∑
i=1

ê2i

Using normal linear regression, we can easily derive finite sampling distributions. Usually we don’t
want to assume normally distributed errors. Luckily for us, the best linear predictor follows the same
process! But we will need to appeal to asymptotic theory to conduct our hypothesis testing.
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11.2.3 Assumptions on the Error Terms

I will lay out the two main error assumptions here.

Strict Exogenity

Strict exogenity is the strongest assumption we can impose on the data. We have strict exogeneity
when:

E[εi|xi] = 0 ∀i

Strict exogenity is nice as it implies that the errors have a mean of zero:

E[εi] = Ex [E[εi|xi]] Using LIE

= Ex[0]

= 0

In addition, strict exogenity implies that the covariance between xi and εi is zero:

Cov(xi, εi) = E[xiεi]− E[xi]E[εi]

= E[xiεi]

= ExE[xiεi|xi]

= Ex [xiE[εi|xi]] Due to the conditional

= Ex[xi · 0]

= 0

So strict exogeneity provides lots of nice properties. But this is a stronger assumption than we
need.

Orthogonality (Exogenous Variables)

We actually only need the orthogonality condition:

E[xiεi] = 0

Note that we proved that this result follows naturally from the covariance proof for strict exogeneity.
As such, strict exogeneity implies orthogonality.
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11.2.4 The OLS Estimator

Sometimes our regression doesn’t have normal errors or a conditional expectation function underlying
the model that is linear. As such, if we still want to use our regression tools, we need to use a best
linear predictor. We use the OLS estimator for this job. Note that if the CEF is non-linear, OLS is
the best linear predictor for the CEF but is not the best predictor for the CEF.

As stated above, our OLS estimator under a non-normal regression is the same as the maximum
likelihood estimator for a normal regression. To see this, we start with minimizing the sum of squared
residuals:

β = argmin
β∈Rk

E
[
(yi − x′

iβ)
′(yi − x′

iβ)
]

= E[−xi(yi − x′
iβ)− xi(yi − x′

iβ)]

= E[−x′
iyi + x′

ixiβ − x′
iyi + x′

ixiβ]

Because we are minimizing, we set this equal to zero:

0 = 2E[x′
ixiβ]− 2E[x′

iyi]

E[x′
ixi]β = E[x′

iyi]

β = E[x′
ixi]

−1E[xiyi]

To estimate, we employ the analogy principle:

β̂OLS =

(
1

n

n∑
i=1

x′
ixi

)−1(
1

n

n∑
i=1

x′
iyi

)

11.2.5 Consistency and Asymptotic Normality

For most estimators, we want both consistency for obvious reasons and asymptotic normality for
hypothesis testing.

Consistency

If we are going to use OLS, we should make sure that under our assumptions OLS is consistent for the
best linear predictor. To do this, we start from the estimator derived above and proceed to simplify
until we can use our asymptotic theorems: WLLN, CMT, and Slutsky’s. Completing the proof requires
us to recognize the fact that yi = xiβ + εi:
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β̂OLS =

(
1

n

n∑
i=1

x′
ixi

)−1(
1

n

n∑
i=1

x′
iyi

)

=

(
1

n

n∑
i=1

x′
ixi

)−1(
1

n

n∑
i=1

x′
i(xiβ + εi)

)

=

(
1

n

n∑
i=1

x′
ixi

)−1(
1

n

n∑
i=1

x′
ixiβ

)
+

(
1

n

n∑
i=1

x′
ixi

)−1(
1

n

n∑
i=1

x′
iεi

)

= β +

(
1

n

n∑
i=1

x′
ixi

)−1(
1

n

n∑
i=1

x′
iεi

)

Taking the limit as n→ ∞, we can apply the WLLN and CMT to find that:

β̂OLS
P−→ β + E[x′

ixi]
−1E[x′

iεi]

Recalling our assumption of orthogonality, we know that this becomes:

= β + E[x′
ixi]

−1 · 0

= β

Therefore:

β̂OLS
P−→ β

Asymptotic Normality

So our OLS estimate is consistent. Now we want to ensure that we can easily test hypotheses. So
want to see if it is asymptotically normal. We follow the same set-up steps as we did when proving
consistency:

β̂OLS =

(
1

n

n∑
i=1

x′
ixi

)−1(
1

n

n∑
i=1

x′
iyi

)

=

(
1

n

n∑
i=1

x′
ixi

)−1(
1

n

n∑
i=1

x′
i(xiβ + εi)

)
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=

(
1

n

n∑
i=1

x′
ixi

)−1(
1

n

n∑
i=1

x′
ixiβ

)
+

(
1

n

n∑
i=1

x′
ixi

)−1(
1

n

n∑
i=1

x′
iεi

)

= β +

(
1

n

n∑
i=1

x′
ixi

)−1(
1

n

n∑
i=1

x′
iεi

)

Now, we subtract β to the left-hand side and multiply both sides by
√
n:

√
n(β̂OLS − β) =

(
1

n

n∑
i=1

x′
ixi

)−1(
1√
n

n∑
i=1

x′
iεi

)

This set-up should look familiar. The left-hand side now looks like the Central Limit Theorem.
We now take advantage of the Multivariate CLT, which says that if we have:

1

n

n∑
i=1

ωi E[ωi] = 0 V ar(ωi) = Σ

then
√
n

(
1

n

n∑
i=1

ωi

)
d−→ N (0,Σ) .

Note that 1√
n

∑n
i=1 x

′
iεi meets each of these requirements, so if we take the limit as n→ ∞:

√
n(β̂OLS − β)

d−→ E[x′
ixi]

−1 ·N
(
0,E[x′

iεiε
′
ix

′
i]
)

= N
(
0,E[x′

ixi]
−1E[x′

iεiε
′
ixi] E[x′

ixi]
−1
)

The asymptotic variance above is the robust asymptotic variance (this simply means that we do
not assume homoskedasticity in the error terms: V ar(εi|xi) = E[ε2i |xi] = σ2(xi)).

If we do assume homoskedasticity (V ar(εi|xi) = E[ε2i |xi] = σ2(xi) = σ2 ∀xi), then we converge
to:

√
n(β̂OLS − β)

d−→ N
(
0, σ2E[x′

ixi]
−1E[x′

ixi] E[x′
ixi]

−1
)

= N
(
0, σ2E[x′

ixi]
−1
)

Know these proofs backward and forward and know how the assumptions we make play into the
proof. Having a strong foundation built for consistency and asymptotic normality proof will be ex-
tremely helpful for Metrics II.
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11.3 Matlab Help

Today’s recitation was full of theory, as there was lots to go through. I wanted to get through a big
chunk of regression theory as I am not sure what the next recitation session will hold (depending on
scheduling I may use the next recitation to prepare for the final). Even still, I think providing some
Matlab help is prudent.

For this next problem set, you get to recreate Stata output in Matlab. This Matlab exercise is
one of the most useful - and cool - problems you will do this semester. To make both this exercise
and, potentially, future exercises easier, create your regression function in a separate file. Create this
function in such a way that it outputs the tables with labels automatically.

In addition to the homoskedastic standard errors, try also including robust standard errors in your
table and compare the numbers. To make sure your output is correct, you can always input the data
into Stata and compare.

Note that to include a constant in your regression, add a vector of ones as a new "variable" to your
data. Here is a snapshot of the inputs I have to my function:

Here is the code I use to generate my tables:

And here is how my table output looks like for Model 2 (the confidence intervals still use ho-
moskedastic standard errors even though I also report robust standard errors):
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11.4 Previous Problem 2: Hansen II 3.13

Let D1 and D2 be vectors of ones and zeroes, with the ith element of D1 equaling one if that observation
is male and zero if that observation is female (D2 being the opposite). Then:

(a) In the OLS regression

Y = D1γ̂1 +D2γ̂2 + µ̂

show that γ̂1 is the sample mean of the dependent variable among men in the sample
and that γ̂2 is the sample mean among women.

(b) Let X(n×k) be an additional matrix of regressors. Describe in words the transformations

Y ∗ = Y −D1Ȳ1 −D2Ȳ2

X∗ = X −D1X̄
′
1 −D2X̄

′
2

Where X̄1 and X̄2 are the k×1 means of the regressors for men and women, respectively.

(c) Compare β̃ from the OLS regression

Y ∗ = X∗β̃ + ẽ

with the β̂ from the OLS regression

Y = D1α̂1 +D2α̂2 +Xβ̂ + ê
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11.4.1 Part a

We first take the general formula for the OLS estimator:

β = (X′X)−1(X′Y )

Looking at the OLS equation we are estimating, we see that

X =
[
D1 D2

]
Calculating X′X then:

X′X =

[
D′

1D1 D′
1D2

D′
2D1 D′

1D1

]

=

[
n1 0

0 n2

]

We can then invert this by using properties of a diagonal block matrix:

(X′X)−1 =

[
1
n1

0

0 1
n2

]

Now we need to find the second part of the OLS estimator:

X′Y =

[
D′

1Y

D′
2Y

]

=

[∑n
i=1 yi1(d1,i = 1)∑n
i=1 yi1(d2,i = 1)

]

Combining the two pieces together, we get:

β̂OLS =

[
1
n1

0

0 1
n2

][∑n
i=1 yi1(d1,i = 1)∑n
i=1 yi1(d2,i = 1)

]

=

[
1
n1

∑n
i=1 yi1(d1,i = 1)

1
n2

∑n
i=1 yi1(d2,i = 1)

]

=

[
Ȳ1

Ȳ2

]
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11.4.2 Part b

The first transformation demeans y so that y∗ has a sample mean of zero. The second transformation
demeans X so that X∗ has a sample mean of zero. When running regressions with these variables,
the β coefficients are now deviations from the mean of the data.

11.4.3 Part c

Let’s start from the second OLS regression. We can rewrite this equation as

Y = X1β̂1 +X2β̂2 + ê

X1 =
[
D1 D2

]
β̂1 =

[
α̂1

α̂2

]
X2 = X

β̂2 = β̂

Now, we don’t care about X1, so we can use the elimination matrix to simplify the problem. Define
M1 ≡ I −X ′

1(X
′
1X1)

−1X1. We can now write β̂2 as:

β̂2 = ((M1X)′M1X)
−1

(M1X)′M1Y

Okay, let’s look at this equation piece-by-piece. First, we look at M1Y :

M1Y =
(
I −X ′

1(X
′
1X1)

−1X1

)
Y

= Y −X ′
1(X

′
1X1)

−1X1Y

= Y −X ′
1

[
Ȳ1

Ȳ2

]
= Y −D1Ȳ1 −D2Ȳ2

= Y ∗

Now we can look at M1X:

M1X =
(
I −X ′

1(X
′
1X1)

−1X1

)
X

= X −X ′
1(X

′
1X1)

−1X1X
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= X −X ′
1

[
1
n1

0

0 1
n2

][∑n
i=1 xi1(d1,i = 1)∑n
i=1 xi1(d2,i = 1)

]

= X −X ′
1

[
x̄′
1

x̄′
2

]
= X −D1x̄

′
1 −D2x̄

′
2

= X∗

Now we have all the pieces we need to find β̂2:

β̂2 = ((M1X)′M1X)
−1

(M1X)′M1Y

= ((X∗)′X∗)
−1

((X∗)′Y ∗)

Turning to the first OLS regression, we apply our normal formula for the OLS estimator:

β̃ = ((X∗)′X∗)
−1

((X∗)′Y ∗)

which is the same estimator we derived from the second OLS regression. Therefore, the two regressions
deliver the same results for the target β’s.

11.5 Practice Problem 1: Hansen II 4.16 Adapted

Take the linear homoskedastic CEF:

Y ∗ = X ′β + e

E[e|X] = 0

E[e2|X] = σ2

and suppose that Y ∗ is measured with error. Instead of Y ∗, we observe Y = Y ∗ + u where u is
measurement error. Suppose that e and u are independent and

E[u|X] = 0

E[u2|X] = σ2
u(X)

(a) Derive an equation for Y as a function of X.

(b) Describe the effect of this measurement error on OLS estimation of β in the feasible
regression of the observed Y on X.

(c) Describe the effect (if any) of the measurement error on the asymptotic variance for β̂.
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11.5.1 Part a

Plug in for Y ∗ in the main OLS equation:

Y ∗ = X ′β + e

Y − u = X ′β + e

Y = X ′β + e+ u Let η ≡ e+ u

= X ′β + η

11.5.2 Part b

Using the standard estimator for βOLS :

β̂ =

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiyi

)

=

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xi(x
′
iβ + ηi)

)

=

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xix
′
i

)
β +

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiηi

)

= β +

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xi(ei + ui)

)

= β +

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiei

)
+

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiui

)
(1)

Noting our assumptions that E[e|X] = 0 and E[u|X] = 0, we can derive:

E[xe] = Ex [xE[e|X]]

= Ex[x · 0]

= Ex[0]

= 0

E[xu] = Ex [xE[u|X]]

= Ex[x · 0]

= Ex[0]

= 0

Taking these two results and taking the probability limit of β̂ gives us:

β̂
P−→ β + E[xix′i]−1E[xiei] + E[xix′i]−1E[xiui]

= β

So we see that β̂ is still consistent for βOLS .
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11.5.3 Part c

Starting from (1) in Part b:

β̂ = β +

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiei

)
+

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiui

)

β̂ − β =

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiei

)
+

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiui

)
√
n(β̂ − β) =

(
1

n

n∑
i=1

xix
′
i

)−1(
1√
n

n∑
i=1

xiei

)
+

(
1

n

n∑
i=1

xix
′
i

)−1(
1√
n

n∑
i=1

xiui

)

To simplify the resulting expression, define Qxx ≡ E[xix′i]. Then as we take n→ ∞:

√
n(β̂ − β)

d−→ N
(
0, Q−1

xxE[xieie′ix′i]Q−1
xx

)
+N

(
0, Q−1

xxE[xiuiu′ix′i]Q−1
xx

)
Note our assumption that E[e2|X] = σ2. Then:

E[e2i ] = Exi

[
E[e2i |xi]

]
= Exi

[σ2]

= σ2

We can simplify our expression for the asymptotic distribution of β̂:

√
n(β̂ − β)

d−→ N
(
0, σ2Q−1

xx

)
+N

(
0, Q−1

xxE[xiuiu′ix′i]Q−1
xx

)
√
n(β̂ − β)

d−→ N
(
0, σ2Q−1

xx +Q−1
xxE[xiuiu′ix′i]Q−1

xx

)
Note that we cannot simplify the second term as the conditional measurement errors are het-

eroskedastic.

11.6 Practice Problem 2: Hansen II 7.1

Take the model Y = X ′
1β1 +X ′

2β2 + e with E[Xe] = 0. Suppose that β1 is estimated regressing Y on
X1 only. Find the probability limit of the estimator. In general, is it consistent for β1? If not, under
what conditions is this estimator consistent for β1?

11.6.1 Solution

We start be defining η ≡ X ′
2β2 + e. Then we have:
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Y = X ′
1β1 + η

We now solve from the β̂OLS estimator:

β̂1 =

(
1

n

n∑
i=1

x1ix
′
1i

)−1(
1

n

n∑
i=1

x1iyi

)

=

(
1

n

n∑
i=1

x1ix
′
1i

)−1(
1

n

n∑
i=1

x1i(x
′
1iβ1 + η)

)

=

(
1

n

n∑
i=1

x1ix
′
1i

)−1(
1

n

n∑
i=1

x1ix
′
1i

)
β1 +

(
1

n

n∑
i=1

x1ix
′
1i

)−1(
1

n

n∑
i=1

x′1iη

)

= β1 +

(
1

n

n∑
i=1

x1ix
′
1i

)−1(
1

n

n∑
i=1

x′1i(x
′
2iβ2 + ei)

)

= β1 +

(
1

n

n∑
i=1

x1ix
′
1i

)−1(
1

n

n∑
i=1

x1ix
′
2i

)
β2 +

(
1

n

n∑
i=1

x1ix
′
1i

)−1(
1

n

n∑
i=1

x1iei

)
P−→ β1 + E[x1ix′1i]−1E[x1ix′2i]β2 + E[x1ix′1i]−1E[x1iei]

= β1 + E[x1ix′1i]−1E[x1ix′2i]β2

If we assume that β2 = 0, then we see that β̂1
P−→ β1. But if β2 ̸= 0, then β̂1 does not converge to

β1.

11.7 Practice Problem 3: Hansen II 7.15

Take the linear model Y = Xβ + e with E[e|X] = 0 and X ∈ R. Consider the estimator

β̂ =

∑n
i=1 x

3
i yi∑n

i=1 x
4
i

Find the asymptotic distribution of
√
n(β̂ − β) as n→ ∞.

11.7.1 Solution

We take β̂ and work from there:
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β̂ =

(
1

n

n∑
i=1

x4i

)−1(
1

n

n∑
i=1

x3i yi

)

=

(
1

n

n∑
i=1

x4i

)−1(
1

n

n∑
i=1

x3i (xiβ + ei)

)

=

(
1

n

n∑
i=1

x4i

)−1(
1

n

n∑
i=1

x4i

)
β +

(
1

n

n∑
i=1

x4i

)−1(
1

n

n∑
i=1

x3i ei

)

= β +

(
1

n

n∑
i=1

x4i

)−1(
1

n

n∑
i=1

x3i ei

)

β̂ − β =

(
1

n

n∑
i=1

x4i

)−1(
1

n

n∑
i=1

x2i (xiei)

)

Note that the last term is zero in expectation. Therefore, if we multiply both sides by
√
n we can

apply the multivariate central limit theorem:

√
n(β̂ − β) =

(
1

n

n∑
i=1

x4i

)−1(
1√
n

n∑
i=1

x2i (xiei)

)
d−→ E[x4i ]−1N

(
0,E[x3i eieix3i ]

)
= N

(
0,E[x4i ]−1E[x3i eieix3i ]E[x4i ]−1

)

11.8 Practice Problem 4: Hansen II 7.23 Adapted

The model is Y = Xβ + e with E[e|X] = 0 and X ∈ R. Consider the estimator:

β̃ =
1

n

n∑
i=1

yi
xi

Is β̃ consistent for β as n→ ∞?

11.8.1 Solution

Starting from β̃:
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β̃ =
1

n

n∑
i=1

yi
xi

=
1

n

n∑
i=1

xiβ + ei
xi

=
1

n

n∑
i=1

β +
ei
xi

=
nβ

n
+

1

n

n∑
i=1

ei
xi

= β +
1

n

n∑
i=1

ei
xi

P−→ β + E
[
ei
xi

]
Recall our assumption that E[e|X] = 0. Then:

E[
ei
n
] = Exi

[
1

n
E[ei|xi]

]
Using LIE

= Exi

[
1

n
· 0
]

= 0

Then the probability limit of β̃ becomes:

β̃
P−→ β + E

[
ei
xi

]
= β + 0

= β
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Chapter 12

Summary of Econometrics I

12.1 Previous Problem: Hansen II 7.7

Of the variables (Y ∗, Y,X) only the pair (Y,X) are observed. In this case, we say that Y ∗ is a latent
variable. Suppose

Y ∗ = X ′β + e

E[Xe] = 0

Y = Y ∗ + u

where u is a measurement error satisfying

E[Xu] = 0

E[Y ∗u] = 0

Let β̂ denote the OLS coefficient from the regression of Y on X.

(a) Is β the coefficient from the linear projection of Y on X?

(b) Is β̂ consistent for β as n→ ∞?

(c) Find the asymptotic distribution of
√
n(β̂ − β) as n→ ∞.

12.1.1 Part a

We use the OLS formula for X on Y and then plug in for Y :

111
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β = E[xx′]−1E[xy]

= E[xx′]−1E[x(y∗ + u)]

= E[xx′]−1E[xy∗] + E[xx′]−1E[xu]

We know from the assumptions given that E[xu] = 0. Plugging this in:

β = E[xx′]−1E[xy∗] + E[xx′]−1E[xu]

= E[xx′]−1E[xy∗] + E[xx′]−1 · 0

= E[xx′]−1E[xy∗]

This is the linear projection coefficient of Y ∗ on X. So we see that the β coefficient is both the
estimator for Y ∗ on X and for Y on X.

12.1.2 Part b

We apply the OLS estimator to the observed equation:

β̂ =

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiyi

)

=

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xi(y
∗
i + ui)

)

=

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiy
∗
i

)
+

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiui

)

=

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xi(x
′
iβ + ei)

)
+

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiui

)

=

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xix
′
i

)
β +

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiei

)

+

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiui

)

= β +

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiei

)
+

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiui

)
(1)
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Now take n→ ∞:

β̂
P−→ β + E[xix′i]−1E[xiei] + E[xix′i]−1E[xiui]

Given our assumptions that E[xiei] = 0 and E[xiui] = 0, we find that:

β̂
P−→ β

So β̂ is consistent for β if our covariates are orthogonal to the measurement error term.

12.1.3 Part c

Starting from equation (1) in part (b):

β̂ = β +

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiei

)
+

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiui

)

β̂ − β =

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiei

)
+

(
1

n

n∑
i=1

xix
′
i

)−1(
1

n

n∑
i=1

xiui

)
√
n
(
β̂ − β

)
=

(
1

n

n∑
i=1

xix
′
i

)−1(
1√
n

n∑
i=1

xiei

)
+

(
1

n

n∑
i=1

xix
′
i

)−1(
1√
n

n∑
i=1

xiui

)

Assuming that E[eu] = 0, we can ignore the covariance term between the two errors when finding the
asymptotic variance:

√
n
(
β̂ − β

)
d−→ E[xix′i]−1N (0,E[xieie′ix′i]) + E[xix′i]−1N (0,E[xiuiu′ix′i])

= N
(
0,E[xix′i]−1E[xieie′ix′i]E[xix′i]−1

)
+N

(
E[xix′i]−1E[xiuiu′ix′i]E[xix′i]−1

)
Let Qxx ≡ E[xix′i]. Then:

√
n
(
β̂ − β

)
d−→ N

(
Q−1

xxE[xieie′ix′i]Q−1
xx +Q−1

xxE[xiuiu′ix′i]Q−1
xx

)

12.2 Maximum Likelihood Estimation: Hansen 10.8

Find the Cramér-Rao lower bound for p in the Bernoulli model. In Section 10.3, we derived that the
MLE for p is p̂ = X̄n. Compute V ar(p̂). Compare V ar(p̂) with the Cramér-Rao lower bound.
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12.2.1 Finding the Cramér-Rao lower bound

We first note that the Cramér-Rao lower bound is given by (nIθ,1)−1. So we know we need to first
find the likelihood function. The pmf of a Bernoulli random variable is π(x) = px(1− p)1−x. So:

L(p|x) =
n∏

i=1

pxi(1− p)1−xi

ℓn(p) =

n∑
i=1

ln(pxi(1− p)1−xi)

=

n∑
i=1

xiln(p) + (1− xi)ln(1− p)

Next, we know we need the score vector, so:

∂ℓn(p)

∂p
=

∂

∂p

[
n∑

i=1

xiln(p) + (1− xi)ln(1− p)

]

=

∑n
i=1 xi
p

−
∑n

i=1(1− xi)

1− p

If we assume that the information matrix equality holds, then we can use the second derivative:

∂2ℓn(p)

∂p2
=

∂

∂p

[∑n
i=1 xi
p

−
∑n

i=1(1− xi)

1− p

]
= −

∑n
i=1 xi
p2

−
∑n

i=1(1− xi)

(1− p)2

Now take the negative expectation:

E
[
−∂

2ℓn(p)

∂p2

]
= E

[∑n
i=1 xi
p2

+

∑n
i=1(1− xi)

(1− p)2

]
=

1

p2

n∑
i=1

E[xi] +
n

(1− p)2
−
∑n

i=1 E[xi]
(1− p)2

=
np

p2
+

n

(1− p)2
− np

(1− p)2

=
n

p
+
n(1− p)

(1− p)2

=
n− np+ np

p(1− p)

=
n

p(1− p)
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Since the information matrix equality is assumed to hold:

Iθ,n =
n

p(1− p)

and because our data is i.i.d.:

nIθ,1 =
n

p(1− p)

We have one last step. We must invert this last expression:

(nIθ,1)−1 =
p(1− p)

n

This is the Cramér-Rao lower bound.

12.2.2 Variance of the Estimator

We still need to find V ar(p̂). So:

V ar(p̂) = V ar

(
1

n

n∑
i=1

xi

)

=
1

n2
V ar

(
n∑

i=1

xi

)

=
1

n2

n∑
i=1

V ar(xi)

=
1

n2

n∑
i=1

p(1− p)

=
n

n2
p(1− p)

=
p(1− p)

n

Note that this is the Cramér-Rao lower bound.
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12.3 Method of Moments Estimation: Hansen 11.3

A Bernoulli random variable X is

P (X = 0) = 1− p

p(X = 1) = p

(a) Propose a moment estimator p̂ for p.

(b) Find the variance of the asymptotic distribution of
√
n(p̂− p).

(c) Propose an estimator of the asymptotic variance of p̂.

12.3.1 Part a

We begin with the moment conditions:

E[xi − µ] = 0

E[xi] = µ

Note that for a Bernoulli random variable µ = p. Use the method of moments estimator:

µ̂ =
1

n

n∑
i=1

xi

p̂ =
1

n

n∑
i=1

xi

12.3.2 Part b

Using the WLLN, we know that p̂ P−→ p. So we just need to find the variance:

V = E[(x− p)(x− p)]

= E[(x− p)2]

= p(1− p)

12.3.3 Part c

This part is really as easy as it seems. Put hats on top of the unknown parameters in our asymptotic
variance:

ÂV AR = p̂(1− p̂)
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12.4 Regression Tests: Hansen 13.3 Extended

Take the exponential model with parameter λ. We want a test for H0 : λ = 1 against HA : λ ̸= 1.

(a) Develop a test based on the sample mean X̄n.

(b) Find the likelihood ratio statistic.

(c) Find the score test.

(d) Find the Wald statistic.

12.4.1 Part a

We begin with the standard asymptotic t-test:

T (x, µ0) =

√
n(x− µ0)

ŝ

=

√
n(x− λ0)

ŝ

=

√
n(x− 1)

ŝ

This is our asymptotic t-test.
Note that in this scenario, because we know the true distribution, we can actually calculate the

standard deviation:

V ar(
√
nx̄) = nV ar

(
1

n

n∑
i=1

xi

)

=
1

n

n∑
i=1

V ar(xi)

=
1

n

n∑
i=1

λ̂2

= λ̂2

= x̄2

Then our t-test becomes:

T (x) =

√
n(x− 1)

ŝ

=

√
n(x− 1)√

x̄2

=

√
n(x− 1)

x̄
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12.4.2 Part b

Using the formula for the likelihood ratio statistic, and noting that the exponential distribution has a
pdf of f(x|λ) = 1

λe
− x

λ :

lr(x) = 2
[
ln(L(θ̂|y)− ln(L(θ̂0|y)

]
= 2

[
ln

(
n∏

i=1

1

λ̂
e−

xi
λ̂

)
− ln

(
n∏

i=1

1

1
e−

xi
1

)]

= 2

[
n∑

i=1

(
−ln(λ̂)− 1

λ̂
xi

)
−

n∑
i=1

−xi

]

= 2

[
−nln(λ̂)− n

λ̂
x̄n + nx̄n

]
= 2

[
x̄n

(
n− n

λ̂

)
− nln(λ̂)

]
d−→ χ2

1

12.4.3 Part c

We first need to find the score evaluated at the null hypothesis of λ0 = 1:[
dℓn(λ)

dλ

]
λ=λ0

= − n

λ0
+

n

λ20
x̄n

= −n
1
+
n

1
x̄n

= n(x̄n − 1)

Assuming the information matrix equality holds, the negative Hessian, and thus the information,
evaluated at the null value is:

Iλ0,1 =
1

λ20

= 1

So the score test is:

Ts(x) =
1

n
n(x̄n − 1) · 1 · n(x̄n − 1)

= n(x̄n − 1)2

d−→ χ2
1
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12.4.4 Part d

Last test to derive. Using the constraint g(·) defined above:

g(λ) = λ− λ0

= λ− 1

= 0

Now we need the derivative of g(λ) with respect to the true λ:

∂g(λ)

∂λ
= 1

Using the Wald statistic formula from above:

Tw(x) = ng(λ̂n)

(
∂g(λ)

∂λ
I−1

λ̂n,1

∂g(λ)

∂λ

)−1

g(λ̂n)

= n
(
λ̂n − 1

)
· 1

λ̂2n
· (λ̂n − 1)

=
n(λ̂n − 1)2

λ̂n
2

=
n(x̄n − 1)2

x̄n2

d−→ χ2
1

This result is the square of our t-test as expected.

12.5 Final

These problems should mostly cover the topics that could be on your final. We have gone through
regression, consistency, asymptotic normality, MLE, MoM, and standard hypothesis testing (look at
confidence intervals before Monday). Know these well and you should be fine on the final.

Some tips: do not leave anything blank. At the very least, sketch out how you would approach
the problem. As always I am available for questions should you have any. If you have a question that
would be difficult to answer over email, feel free to email me to set-up a time to meet or just check to
see if I am in my office.

Good luck on Monday and have a great break!
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